Innovations in Energy Technology | Innoget

Find the latest Innovations, Patents and Knowhow in Energy, Nuclear Energy, Nuclear Fusion, Thermal Energy, Nuclear Fission, Electrical Energy and Clean Energy

Coordinated efforts in joint development and novel projects is flourishing advancement and new technology improvements in the sectors of nuclear energy, nuclear fusion, thermal energy, nuclear fission, electrical energy, sources of energy and clean energy. Clean energy and thermal energy are just a couple of examples of energy sources where many research organizations and academia concentrate their efforts and resources in order to innovate and develop novel technologies. In this way, the new Open Innovation trend based on establishing connections between academia, research organizations and researchers, among many others, is helping this players to connect with industry demands. Keep sourcing below among the Technology Offers posted by leading research organizations and scientists and directly submit a request for information in order to find solutions to your technological and innovation needs related to the energy sector.

Graft Polymer UK Ltd posted this:

Producing PE125 using GRAFTALEN™ MP-UHHD. Consumer properties, which should be taken into consideration: 1) The unique toughness of the material (the highest rate of all known polymers), namely, Over 160 kJ/m2 2) High abrasion resistance 3) Low friction coefficient (self-lubricating) 4) High resistance to chemically aggressive reagents (media) 5) High creep resistance (geometric stability) Ordinary way - This type of process is quite expensive. Production of PE125, in compounding with bimodal PE100, from 8 to 45% of supermolecular polyethylene is injected, reaching dispersion by multiple compounding (4 stages) in an extruder cascade (XXXXX technology). GRAFTALEN™ MP-UHHD (alloy) is a MELT-PROCESSABLE concentrate of UHMWPE on an HDPE matrix. As HDPE, you can choose the most affordable HDPE (pipe) grade. To obtain polyethylene according to the standards PE125 (with a minimum strength indicator MRS> 13.8-14 MPa, in comparison PE100 has MRS only 10 MPa), a significant improvement in the resistance against hydrostatic pressure is required. For a conventional bimodal HDPE, this indicator is difficult to achieve, since it directly correlates with the impact strength/density indicators and with simple extrapolation, it turns out that the required indicator for PE125 simply does not reach the bimodal HDPE matrix. Another problem - the difficulty in maintaining the geometric stability of the pipe (the thickness at the top of the pipe is often less than at the bottom) due to the sagging effect (the phenomenon of the gravitational flow of a polymer melt). This phenomenon is more pronounced for thick-walled pipes. The specific blend of HDPE with UHMWPE allows solving these problems above.
Project: Innovative pilot production modified compounds by PE125 standard for multifunctional applications.