Energy production, transmission and conversion Technology Offers

Korea Institute of Energy Research posted this:

Researchers at the Korea Institute of Energy Research have developed a new palladium alloy composite membrane for hydrogen separation. Palladium-based membranes have been used for decades in hydrogen extraction because of their high permeability and good surface properties and because palladium, like all metals, is 100% selective for hydrogen transport. Palladium membranes have been used to provide very pure hydrogen for semiconductor manufacture, fuel cells, and laboratory use. Palladium also combines excellent hydrogen transport and discrimination properties with resistance to high temperatures, corrosion, and solvents. Further, palladium is easily formed into tubes that are easily fabricated into hydrogen extraction and palladium surfaces are not readily poisoned by carbon monoxide, steam, and hydrocarbons. This exciting technology relates to an advanced preparation method of palladium alloy composite membrane for hydrogen separation. Generally, a separation membrane used for the preparation of ultra-high pure hydrogen, has low permeability. This possesses a significant challenge to hydrogen separation. Intensive and extensive research on the improvement of the selective permeability of membranes used for hydrogen separation has been, and is presently, being carried out. The commonly used non-porous palladium membrane has high hydrogen selectivity but low permeability. Therefore, despite the selective hydrogen permeability of the separation membrane being intended to be improved by coating the surface of the porous material with a thin palladium membrane, the membrane still suffers due to frequent deformities caused by phases change of the lattice structure during hydrogen absorption. With the goal of preventing such deformations, a palladium alloy separation membrane is primarily used, at present. However, this common method of using a metal alloyed with palladium, also incur limitations. Notably the frequent palladium-copper alloy membrane suffers low hydrogen selectivity and poor adhesion, issues which commonly lead to brakes in the palladium-copper alloy separation membrane. This advanced technology has been designed to overcome the common issues experienced during the application of palladium alloyed membranes for hydrogen separation. An objective of this technology is the provision of an advantageous palladium alloy composite membrane, which requires a small amount of palladium and thus possess high hydrogen selectivity, high durability and enables improvements in properties of the separation membrane, regardless of the kind of support.

Korea Institute of Energy Research posted this:

Researchers at the Korea Institute of Energy Research have developed a new method of managing the inherent limitations of heat pumps, in terms of their application for unpredictable heat energy sources. Heat pumps are devices that can produce hot water with a high temperature using a heat source with a low temperature. In general, heat pumps produce hot water with a set temperature and a set flow rate using a heat source that is introduced with both predetermined temperature and flow rate. However, with the increased use of new renewable heat sources, such as geothermal heat, sewage heat and solar heat; there is a need for heat pumps with the capacity to manage heat sources with characteristically unpredictable temperatures and flow rates that are prone to sudden change. What’s more, there is an increasing requirement for heat pumps capable of supplying hot water at varying temperatures, as opposed to one set temperature – to accommodate demand requirements. Conventional heat pumps are limited in their capability to sufficiently align the characteristics of heat sources and the characteristics of the demand source. Generally, demand sources for heat pump energy require both consistent temperatures and flow rates. Meaning that heat sources, such as renewables, which suffer unreliable temperatures and flow rates are generally unsuitable for heat pump use. The innovative broadband heat pump technology presented offers a unique system which can overcome the inherent limitations of heat pump technology. This technology enables the control of heat source temperatures in order that heat supplied is at a uniform temperature and can be tailored to meet the requirements of the demand source. This broadband heat pump technology has several beneficial implications. Notably the pump is capable of being supplied with hot water with various levels of temperature, which can then be supplied to any desired demand source. Additionally, since heat sources with varying levels of temperature, notably including renewable energy sources, can be used, energy availability increases, and the pump offers a gateway for renewable energy use.