Petrochemistry, Petroleum Engineering Technology Offers

Cracow University of Technology posted this:

A comprehensive method to assess the technical condition of the pressure equipment of installation operated in the chemical and petrochemical industry, with the use of acoustic emission signal analysis, structure stress field and the degradation st The algorithm for the assessment of the technical condition of pressure equipment of chemical and petrochemical installations, subjected to the long-term operation, allows to determine the damage degree of the material and allows to predict the further development of degradation processes in a function of time. The proposed approach to the problem of safe operation of devices is fundamentally different from the solutions which are currently used in industrial practice. Currently, the supervision of these objects is based mainly on standard non-destructive testing methods. The main limitation of used methods is the lack of the possibility of both examining the object in its entire volume and testing the device in working conditions. Developed algorithm allows to effectively solve current problems in the diagnosis of chemical installations related to the assessment of their technical condition and determination of the conditions for further operation in real time. The algorithm is particularly recommended for monitoring devices in which adverse damages occur due to the long-term operation.

Korea Institute of Energy Research posted this:

The present technology relates to a process and apparatus for recovering high-purity olefin from mixed gasses containing light olefins (ethylene, propylene, etc.). Olefin is a long chain polymer synthetic-fibre created when ethylene and/or propylene gases are polymerized under specific conditions. The resultant material, olefin, has a myriad of applications in manufacturing, household products, clothing and petrochemical products including plastics and packaging. Due to the non-toxicity of olefin in water, as well as the structural stability of materials manufactured using olefin fibre, the material, in its purest form, offers numerous advantages to different sectors and in several industrial processes. Generally, distillation techniques have been used to separate olefin/paraffin mixtures. However, significant challenges arise during these conventional distillation processes due to the small difference in boiling point between olefin and paraffin, and the subsequent requirement that distillation columns must have several distillation trays. This requirement later incurs high energy and equipment costs. In recent years, technology advancements have enabled the reduction in olefin separation costs by using a process of separating olefin by absorption as opposed to the traditional method of separation through distillation. This advanced olefin separation technology builds on the capabilities of recently developed absorption methods, through the addition of a sophisticated displacement desorption process of desorbing absorbed ethylene using a desorbent. Light olefins production is a multi-billion-dollar commodity industry, and the olefin separation process is the most energy-intensive operation in the production of ethylene, propylene and other high-volume olefin petrochemicals. Using this patented displacement-desorption process the high energy requirement of olefin separation can be reduced, thus saving resources and improving economic efficiency.