Measurement and Detection of Pollution Technology Offers

Universidad de Alcalá-OTRI posted this:

The research group in Bioelectrochemistry and Biosensors of the University of Alcalá in collaboration with the Textile Industry Research Association (AITEX) has developed an electrochemical sensor of magnesium (Mg2 +) and a construction method based on the formation of a polymeric three-dimensional network that allows the entrapment / immobilization of a selective indicator for Mg2 +, eriochrome black T, by the use of a crosslinking agent and a polymer. The combination of these three reagents allows the construction of the sensor on any conductive surface, avoiding the electro polymerization of the indicator. The resulting sensor allows to measure MG2 + in any type of samples, without the need to add organic salts, additives or organic solvents. The quantification of Mg2 + is done directly by incubating the sensor in the sample containing the analyte, resulting in a modification of the amperometric signal proportional to its concentration. This method has many applications especially in health and biomedical sector since Mg2 + participates in such important activities as neuronal, neuromuscular transmission, or regulation of blood pressure and plays a key role in various pathologies such as vascular and migraines headache. The group is looking for companies in the agro-food, bio-sanitary and environmental sectors, with the aim of reaching technical collaboration agreements, commercial agreements or patent licenses.
Development and method of construction of a new electrochemical sensor of Magnesium (Mg2 +), without the need to add organic salts, additives or organic solvents to the sample

Centre Technology Transfer CITTRU posted this:

Due to the rising emission of methane and its extensive contribution to the greenhouse effect, the reduction of CH4 emissions from low-caloric anthropogenic sources is currently a vital importance. The main sources of the methane emission are: exploitation of oil pools, coal mining, pas power stations, landfills, agriculture and biomass. The most popular method of the reduction of methane is its catalytic combustion. Unfortunately, this method has few limitations associated mainly with hard activation of the C-H bond in CH4 and low concentrations of methane in the emitted gases. The catalytic oxidation of methane is limited also by the very large airflows (of order 105 m3/min), passing through the catalyst bed during the process. There is still a lack on the market of a technological solution based on total catalytic combustion of CH4 in the economically reasonable low-temperature window, i.e. below 400 °C. The most popular method among the methods limiting the emission of methane to the atmosphere is the one based on its catalytic combustion. However, this procedure has disadvantages, mainly due to the high activation energy of methane molecules and also because of the low concentration of methane emitted from anthropogenic sources. There is no technology allowing effectively combusting of methane with the concentration of 1-2 % and in the economically justified temperatures, i.e. lower than 400 °C. The fundamental advantages of offered solutions are: - method for preparing catalysts that ensures the repeatability of the parameters and high efficiency in the reactions of methane combustion, - increased both the activity and the thermal stability of the catalysts in comparison with other systems described in the literature, - possibility of using the catalysts in the total oxidation of methane emitted from the low-caloric sources at temperatures below 400 °C.