Fundació URV

3D printing of continuous fibers for microfabrication, such as flexible electronics and biofabrication

Posted by Unitat from Fundació URVResponsive · Patents for licensing · Spain

Summary of the technology

A versatile 3D printing technology is offered in which electrostatic control is used to form a continuous electrohydrodynamic ink jet and to precisely position it on a substrate forming a predefined pattern made of solid fiber with fiber diameter typically in the few-micron or submicron ranges.

The technology uses electrostatic forces to deflect the trajectory of the fast-moving jet in its flight toward the substrate, in a time-varying fashion. This technology is capable of printing predefined 2D patterns and 3D microstructures with submicrometer resolution and unprecedented speed of up to 2000 fiber layers per second, resulting in total printing time of up to about 1 second per 3D structure. A patent is pending for this technology.

Fundació URV

Description of the technology

The offered technology is a method for improving electrohydrodynamic (EHD) jet printing so that it can be used for printing at high resolution using a continuous fiber as thin as a micron and smaller. A solid fiber is printed as an electrohydrodynamic (EHD) jet is collected on a substrate, where it solidifies. Electrohydrodynamically generated jets can easily be made into such small diameters, and to move at high speed towards a substrate (even above 1 m/s). Conventionally, patterns are produced by moving a mechanical stage under an EHD jet. However, state-of-the-art mechanical stages are too slow to allow controlling the landing position of a fast-moving jet, which often buckles. The offered technology bypasses the limitations of mechanical stages by using electrostatic deflection to print high-resolution features at high speed. It avoids moving the substrate (or the nozzle concerning the substrate), by continuously deflecting the jet's trajectory by means of the electric field created by auxiliary electrodes. In this way, the jet "writes" a complex time varying pattern on the substrate without buckling.

This method is advantageous as fiber acceleration attainable by electrostatic jet deflection is 5 orders of magnitude higher than the maximum acceleration mechanical translation stages are capable of. Higher acceleration allows precise printing of complex predefined 2D patterns. If electrostatic jet deflection is combined with the translation of the substrate, fiber tracks with preset width, fiber alignment and orientation are printed. In this way, fiber tracks with anisotropic properties (e.g., electrical, optical or wetting properties) can be manufactured. 3D microstructures can be created without moving the substrate, by sequentially stacking fiber layers with printing speed up to 2000 layers per second, while the height of the obtained 3D microstructures is controlled down to the height of single layer.

Simplicity, material versatility and high fiber generation speed, inherent to EHD jetting, paired with the precision of electrostatic jet deflection makes this an enabling technology for the additive manufacturing of microstructures with submicrometer resolution such as are used in electronics, sensors, MEMS (micro-electro-mechanical systems), biofabrication and tissue engineering, among other applications.

Benefits:

Allows printing of predefined 2D patterns and 3D microstructures using a continuous fiber.
5 orders of magnitude faster accelerations compared to translation mechanical stages
Accelerations as high as 500 000 m/s2Printing speed up to 2000 layers per second
Full control over fiber positioning, alignment, and orientation
Submicrometer resolution in X, Y, and Z
Material versatility

Desired business relationship

Technology selling

Patent licensing

Applications

Printing of continuous fiber for flexible electronics, fabrication of gas sensors, fabrication of MEMS (micro-electro-mechanical systems), printing of scaffolds for tissue engineering, electrohydrodynamic printing, high resolution 3D printing, melt electrowriting (MEW), electrospinning

Intellectual property status

Patent already applied for
EP19382349.9
OEPM

Patent already applied for
EP19382349.9
EPO

Technology Owner

Fundació URV

Technology Transfer Office

Related keywords

  • Industrial manufacturing, Material and Transport Technologies
  • Design and Modelling / Prototypes
  • 3D printing design and modelling
  • Materials Technology
  • Plastics, Polymers
  • 3D printing
  • Industrial Manufacture
  • Building materials
  • Printing
  • Printed circuits and integrated circuits
  • Industrial Technologies
  • Electronics, Microelectronics
  • 3D
  • Printing and binding
  • flexible electronics
  • mems
  • fibers
  • microfabrication
  • biofabrication

About Fundació URV

Technology Transfer Office from Spain

The Technology Transfer and Innovation Center (CTTi) meets from the University environment the technological needs and services generated by the productive sectors and administration, through the management of Transfer of Technology and Knowledge, the Intellectual and Intellectual Property management, Technology Watch, Entrepreneurship, and Technology Infrastructures Offer (business incubator).

Send your request

By clicking "Send your request" you are signing up and accepting our Terms of Service and Privacy policy

Technology Offers on Innoget are directly posted and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.