Innovative Products and Technologies Technology Offers Page 3

Including commercially available innovative products and technologies

Yissum - Research Development Company of the Hebrew University posted this:

Pre-filing Nov. 2016 Project ID : 9-2016-4371

Korea Institute of Energy Research posted this:

Researchers at the Korea Institute of Energy Research have developed a new palladium alloy composite membrane for hydrogen separation. Palladium-based membranes have been used for decades in hydrogen extraction because of their high permeability and good surface properties and because palladium, like all metals, is 100% selective for hydrogen transport. Palladium membranes have been used to provide very pure hydrogen for semiconductor manufacture, fuel cells, and laboratory use. Palladium also combines excellent hydrogen transport and discrimination properties with resistance to high temperatures, corrosion, and solvents. Further, palladium is easily formed into tubes that are easily fabricated into hydrogen extraction and palladium surfaces are not readily poisoned by carbon monoxide, steam, and hydrocarbons. This exciting technology relates to an advanced preparation method of palladium alloy composite membrane for hydrogen separation. Generally, a separation membrane used for the preparation of ultra-high pure hydrogen, has low permeability. This possesses a significant challenge to hydrogen separation. Intensive and extensive research on the improvement of the selective permeability of membranes used for hydrogen separation has been, and is presently, being carried out. The commonly used non-porous palladium membrane has high hydrogen selectivity but low permeability. Therefore, despite the selective hydrogen permeability of the separation membrane being intended to be improved by coating the surface of the porous material with a thin palladium membrane, the membrane still suffers due to frequent deformities caused by phases change of the lattice structure during hydrogen absorption. With the goal of preventing such deformations, a palladium alloy separation membrane is primarily used, at present. However, this common method of using a metal alloyed with palladium, also incur limitations. Notably the frequent palladium-copper alloy membrane suffers low hydrogen selectivity and poor adhesion, issues which commonly lead to brakes in the palladium-copper alloy separation membrane. This advanced technology has been designed to overcome the common issues experienced during the application of palladium alloyed membranes for hydrogen separation. An objective of this technology is the provision of an advantageous palladium alloy composite membrane, which requires a small amount of palladium and thus possess high hydrogen selectivity, high durability and enables improvements in properties of the separation membrane, regardless of the kind of support.