Centre Technology Transfer CITTRU

The subject of the offer is new nonlinear optical materials for use in optoelectronics, optical devices and components.

Posted by Centre Technology Transfer CITTRUResponsive · Patents for licensing · Poland

Summary of the technology


The offer relates to co-crystals, from which one of polymorphic form is an efficient, phase matchable second harmonic generator. The averaged, relative experimental of second harmonic generation is over 14 times higher than of the commonly used nonlinear material (potassium dihydrogen phosphate). The presented optical material is colorless, suitable for growing large single crystals. The obtained crystals have extreme values of birefringence with reference to other transparent materials. The maximum birefringence for one of the polymorphic form is 0,46. For comparison, calcite, which is commonly used for the production of polarizing prisms, has a birefringence c.a 0.17.
The offered materials, thanks to their properties, may be used for the construction of optical devices and components. Moreover, due to the polar structure may exhibit properties such as pyroelectricity, piezoelectricity or ferroelectricity

Description of the technology

The phenomenon of birefringence, splitting the light rays, is used in many optical devices, including liquid crystal displays, light modulators, OAGs (optical axis gratings) as well as in the production of optical elements, e.g. the Nicol prism and wave plates. The phenomenon of birefringence, that is splitting the light rays, is used in many optical devices, including liquid crystal displays, light modulators, OAGs (optical axis gratings) as well as in the production of optical elements, e.g. the Nicol prism and wave plates. Filters with known birefringence are used in cameras to compensate for the irreversible signal distortion, the so-called spatial aliasing. This effect plays also a key role in nonlinear optical processes, including the second harmonic generation (SHG), i.e. light with twice the shorter wavelength than incident light. Materials exhibiting nonlinear optical properties (NLO) are widely used in optoelectronics, e.g. for the conversion of light frequency as well as in photonics and telecommunications.

The unceasing quest for new nonlinear optical materials characterized by high efficiency of light conversion, mechanical and optical resistance (high destruction threshold) and adequate transparency takes place in materials science.

The offer relates to co-crystals, from which one of polymorphic form is an efficient, phase matchable second harmonic generator. The averaged, relative experimental of second harmonic generation is over 14 times higher than of the commonly used nonlinear material (potassium dihydrogen phosphate). The presented optical material is colorless, suitable for growing large single crystals. The obtained crystals have extreme values of birefringence with reference to other transparent materials. The maximum birefringence for one of the polymorphic form is 0,46. For comparison, calcite, which is commonly used for the production of polarizing prisms, has a birefringence c.a 0.17.

The offered materials, thanks to their properties, may be used for the construction of optical devices and components. Moreover, due to the polar structure may exhibit properties such as pyroelectricity, piezoelectricity or ferroelectricity.

Advantages of the technology:

The presented optical materials are characterized by:

  • large birefringence (2-3 times greater compared to commonly used polarizing prisms);
  • the high efficiency of the second harmonic generation ( 14 times higher than of the commercial used optical material) and ability to fulfill phase matching condition;
  • the colorlessness desired in the context of optical applications;
  • suitable for growing large single crystals.

The above-mentioned features of the presented technology testify to the competitiveness in relation to the materials currently used for the construction of optical systems (e.g liquid crystal displays, CD / DVD laser reading systems, optical fiber technology, LED matrices, photoelectric detectors).

Desired business relationship

Technology selling

Patent licensing

Technology development

Applications

Optical devices and components, optoelectronics, nonlinear optics

Current development status

Laboratory prototypes

Intellectual property status

Patent already applied for
P 421574
Poland

Technology Owner

Centre Technology Transfer CITTRU

Technology Transfer Office

Related keywords

  • Industrial manufacturing, Material and Transport Technologies
  • Materials Technology
  • Optical Materials
  • Electronics Related Market
  • Laser Related

About Centre Technology Transfer CITTRU

Technology Transfer Office from Poland

Centre for Innovation, Technology Transfer and University Development (CITTRU) is a part of Jagiellonian University, whose role is to promote university research, to support innovation and to create cooperation with the business. CITTRU main task is to offer the scientific achievements of the Jagiellonian University in the market by providing legal protection, licensing, sale of intellectual property rights, creation of academic business, coordination of company-ordered research projects, etc. Currently promoted technologies are mainly focused on new materials science, pharmacology and medical technology.

Inventions offered by Jagiellonian University are promoted and awarded during numerous exhibitions, e.g. 58th International Exhibition of Innovation, Research and New Technologies INNOVA (BRUSSELS 2009), 38th International Exhibition of Invention New Techniques & Products (Geneva 2010) or 24th International exhibition of environmental equipment, technologies and services POLLUTEC (Paris 2009).

Send your request

By clicking "Send your request" you are signing up and accepting our Terms of Service and Privacy policy

Technology Offers on Innoget are directly posted and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.