A Marker for Consciousness State Following Brain Injury

  • Yeda
  • From Israel
  • Responsive
  • Patents for licensing

Summary of the technology

Improvements in emergency medicine have increased survival rates after brain injury but, paradoxically, have resulted in an increasing number of survivors living with disorders of consciousness. The limitations of current consciousness assessment tools result in a high rate of misdiagnosis, which has numerous therapeutic, economic, and ethical implications. The current technology enables discrimination between minimally conscious patients and patients in a vegetative state based on their sniff responses to pleasant and malodorous odorants. Moreover, responses in patients in a vegetative state were a concrete indication of future regaining of consciousness.
Therefore, sniff responses can serve as a diagnostic and prognostic biomarker of states of consciousness and direct clinical decision-making processes.


The Need

Disorders of consciousness (DOC) resulting from a severe brain injury can range from no signs of awareness in a vegetative state (VS, also known as unresponsive wakefulness syndrome (UWS)) to inconsistent reproducible evidence of conscious awareness in a minimally conscious state (MCS). DOC is primarily diagnosed via behavioral assessment based on voluntary responses. However, due to motor impairments, communication difficulties, and fluctuations of vigilance state, reported rates of misdiagnosis are as high as 40%. Misdiagnosis between VS and MCS has significant therapeutic, ethical, and financial implications and can misdirect end-of-life decisions. Recent electrophysiological and neuroimaging developments addressing the challenge of consciousness detection in DOC were able to uncover awareness in DOC patients who appeared completely unresponsive. However, these techniques have substantial practical limitations. fMRI based-methods are costly, highly sensitive to motion, and require patient portability and a metal-free environment. EEG-based methods can be used at the bedside but are not available at all hospitals and care homes and require expertise. Thus, there remains a need for accurate and accessible awareness detection methods in DOC patients.

The Solution

In the proposed technology, the olfactory sniff response, an involuntary sensory process requiring cortical and subcortical structure integrity, is exploited to inform on state of consciousness.

Technology essence

This technology is founded on the reliance of olfaction on brain structures involved in the basic mechanisms of arousal. More specifically, while olfactory sniff response is an involuntary physiological process that can persist without conscious awareness, it still requires intact olfactory neuroanatomical structures. In a longitudinal, proof-ofconcept study, 31 patients with MCS and 24 patients with VS were repeatedly exposed, over multiple independent sessions, to pleasant and unpleasant odors. Cognitive sniff responses were assessed by measuring nasal inhalation volumes and comparing them to baseline volumes measured in the absence of an odorous agent; state of consciousness was assessed using standard clinical tools. Nasal airflow was reduced by approximately 10% in the group of MCS patients presented with either a pleasant or malodorous agent (Figure 1A), while no significant changes were measured in the VS patient group (Figure 1B). On the single-patient level, sniff responses in VS patients were a concrete indication (100% specificity) of future regaining of consciousness, and in some patients, preceded any other sign of consciousness recovery by days to months. Such responses also predicted 3.5-year survival rates at 92% accuracy.

Applications & Advantages


Patient triage

Diagnosis of DOC

Prognosis of DOC

Guide medical decision-making processes

Improved level of care

Independent of verbal- and task-focused responsiveness



Simple to use


Development Status

A longitudinal, observational, comparative study demonstrated the feasibility of the technology in discriminating between MCS and VS patients. Future works will involve the definition of thresholds indicative of distinct DOC subclasses and the construction of algorithms for automated bedside measure and interpretation of sniff responses.


Arzi A, Rozenkrantz L, Gorodisky L, et al. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature (2020) 581(7809):428-33.

Related Keywords

  • Biological Sciences
  • Medicine, Human Health
  • Clinical Research, Trials
  • Medical Research
  • Biology / Biotechnology
  • Diagnostic

About Yeda

Yeda ("Knowledge" in Hebrew) Research and Development Company Ltd. is the commercial arm of the Weizmann Institute of Science (WIS) and is the second company of its kind established in the world.

WIS is one of the world’s leading multidisciplinary basic research institutions in the natural and exact sciences. It is located in Rehovot, Israel, just south of Tel Aviv. It was initially established as the Daniel Sieff Institute in 1934, by Israel and Rebecca Sieff of London in memory of their son Daniel. In 1949, it was renamed for Dr. Chaim Weizmann, the first President of the State of Israel and Founder of the Institute.

Yeda initiates and promotes the transfer to the global marketplace of research findings and innovative technologies developed by WIS scientists. Yeda holds an exclusive agreement with WIS to market and commercialize its intellectual property and generate income to support further research and education.

Since 1959 Yeda has generated the highest income per researcher compared to any other TTO worldwide. Weizmann has generated a number of groundbreaking therapies, such as Copaxone, Rebif, Tookad, Erbitux, Vectibix, Protrazza, Humira, and recently the CAR-T cancer therapy Yescarta.

Yeda performs the following activities:

◣ Identifies and assesses research projects with commercial potential.
◣ Protects the intellectual property of WIS and its scientists.
◣ Licenses WIS' inventions and technologies to industry.
◣ Establishes new Startup companies based in WIS Intellectual Property
◣ Channels funding from industry to research projects.

Our portfolio covers a broad spectrum of the natural sciences, including:

◣ Agriculture and Plant Genetics, including Bio-fuels
◣ Chemistry and Nanotechnology
◣ Environmental Sciences and Solar Energy
◣ Mathematics and Computer Science
◣ Medical Devices
◣ Pharmaceuticals and Diagnostics
◣ Physics and Electro-Optics
◣ Research Tools


Never miss an update from Yeda

Create your free account to connect with Yeda and thousands of other innovative organizations and professionals worldwide


Send a request for information
to Yeda

About Technology Offers

Technology Offers on Innoget are directly posted
and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.


Need help requesting additional information or have questions regarding this Technology Offer?
Contact Innoget support