3D Flexible Electrode for Electrochemical Cell Diagnostics

Summary of the technology

A compact 3D electrochemical sensor constructed on a pliant substrate for in-vitro and in-vivo measurements of cells and tissues. The device includes a specially designed sensing layer containging reference electrodes and measurement electrodes that is linked through specially designed via interconnectors to contact pads located in the upper part and connected to a measuring device. The sensor is enclosed in a housing which provides mechanical support and allows controllable movement in three dimensions.
Project ID : 8-2013-461

RAMOT at Tel Aviv University Ltd.

Details of the Technology Offer

Technology
A compact 3D electrochemical sensor constructed on a pliant substrate for in-vitro and in-vivo measurements of cells and tissues. The device includes a specially designed sensing layer containing reference and measurement electrodes that are connected to contact pads on the back side of the device by uniquely designed via interconnects. The sensor is enclosed in a housing which provides mechanical support and allows controllable movement in three dimensions.

Background and Advantages
Conventional integrated electrode configurations are planar and bottom sensing. The planar configuration of most conventional electrodes requires the placement of cells onto the electrode's surface and the measurement of analytes secreted onto the contact region. This process requires a traumatic preliminary step of detachment of the cells to be tested from their origin – tissue, cell culture, etc. – resulting in poor signal to noise ratio. Our new sensor offers several fundamental advantages: short diffusion distance of secreted analytes towards the electrode surface which improves the signal to noise ratio, increased response time, enhanced analytical performance and increased detector sensitivity. These result in more rapid and sensitive detection of biochemical and physiological processes that are essential for basic research as well as for medical applications. The design and the size of the sensor will offer portability and ease-of-use. The design geometry allows the collection of data without damaging (or otherwise affecting) the cells (even in situ) and provides immediate information on cell physiology. The miniaturization capabilities due to the unique configuration of the proposed device will allow the monitoring of a single cell. The measurements can be performed in a laboratory setting and even during surgery. This new technology allows accurate, rapid and direct diagnosis carried out on small volumes of cells or tissues without the need of transferring or removing the examined samples, thus eliminating the need for pretreatment and labor intensive preparative steps. Changes in the microenvironment of a cell can be easily detected by this approach. The configuration provides a minimized distance between the sensing surfaces in contact with the cell which is essential for improving device sensitivity.


Sense electrodes of 3D electrochemical sensor
(Electrical contact pads on the back side are not shown)

Potential Applications
This structure allows miniaturization down to the micron level and will provide surgeons with a diagnostic tool that can identify the margins of a tumor, contributing to a much more accurate surgical procedure. A miniaturized sensor head can be fitted onto an endoscope allowing for direct contact with identified and suspected pathologies in vivo. It will find use in point-of-care and back office diagnostics.

Patent Status
US provisional patent has been submitted

Project Status
Two generations of proof-of-concept devices have been built and successfully tested on biological samples.

Project manager

Rona Samler
VP, BD Physical Science, Medical Device, Chemistry

Project researchers

Yosi Shacham- Diamand
T.A.U Tel Aviv University, Engineering
School of Electrical Engineering

David Schreiber
T.A.U Tel Aviv University, Engineering
Materials and Nanotechnologies Program

Related Keywords

  • Medical Technology / Biomedical Engineering
  • Medicine, Human Health
  • Biology / Biotechnology
  • Diagnostics, Diagnosis
  • Safety
  • Environment
  • Waste Management
  • Water Management
  • Environmental and Biometrics Sensors, Actuators
  • Sensors for cars and transport
  • Biosensor
  • Sensors & Wireless products
  • Sensor Technology related to measurements
  • Diagnostic
  • Medical equipment
  • Other medical/health related (not elsewhere classified)
  • Medical imaging
  • Pollution and Recycling Related
  • Other Industrial Products (not elsewhere classified)
  • Industrial measurement and sensing equipment
  • medical devices
  • Diagnostic Instruments
  • sensors

About RAMOT at Tel Aviv University Ltd.

Ramot is Tel Aviv University's (TAU) technology transfer company and its liaison to industry, bringing promising scientific discoveries made at the university to industry's attention. The company provides the legal and commercial frameworks for inventions made by TAU faculty, students and researchers, protecting discoveries with patents and working jointly with industry to bring scientific innovations to the market.

RAMOT at Tel Aviv University Ltd.

Never miss an update from RAMOT at Tel Aviv University Ltd.

Create your free account to connect with RAMOT at Tel Aviv University Ltd. and thousands of other innovative organizations and professionals worldwide

RAMOT at Tel Aviv University Ltd.

Send a request for information
to RAMOT at Tel Aviv University Ltd.

About Technology Offers

Technology Offers on Innoget are directly posted
and managed by its members as well as evaluation of requests for information. Innoget is the trusted open innovation and science network aimed at directly connect industry needs with professionals online.

Help

Need help requesting additional information or have questions regarding this Technology Offer?
Contact Innoget support