
1 Business Proposal

The University of Seville is willing to sell or license the patents [1], [2] and
[3] described in Sections 4 and 5 of this document.

2 Introduction

The computation of sine and cosine functions is fundamental in a wide range
of applications, including that of signal processing [4,5]. Obvious examples are
the computation of discrete cosine transforms (DCT), discrete sine transforms
(DST), and their inverses (IDCT and IDST) [6]. A fused sine-and-cosine
implementation is of major interest because various methods compute both and
numerous applications require both [4]. In this contribution, the focus is on the
implementation of devices that provide the sine and cosine of multiples of a
constant angle φ, that is, sin(nφ) and cos(nφ), where n is an integer given as an
input. Applications of such devices include the following:

• Implementing the sine and/or cosine functions in arithmetic units. For
example, suppose an arithmetic unit must compute the sine and/or cosine
of a number x using the IEEE 754-1985 double-precision format [7]. x is
coded in a 64-bit word with 3 fields called sign (1 bit), exponent (11 bits), and
significand (52 bits). The significand is a number in the range [1, 2− 2−52]
coded in fixed-point, while the exponent is an integer laying in the range
[−1023, 1024] coded in excess 1023. If the exponent is lower than −27,
then the unit can simply return 1 as the cosine and x as the sine, assuming
rounding to the nearest representable value [8]. Otherwise, it can return
the sine and/or cosine of nφ, where φ is the constant 2−27−52 = 2−79 and
n is the integer x279.

• Generating the twiddle factors of a Discrete Fourier Transform [9]. The
discrete Fourier transform (DFT) of a complex sequence x of length L
is another complex sequence X of the same length defined by X(k) =

∑L−1
t=0 x(t)Wtk

L , where WL = eφi and φ = −2π/L. The twiddle factors are
the integer powers of WL, and there are L different twiddle factors. Thus,
the twiddle factor of index n is Wn

L = (eφi)n = enφi = sin(nφ)i + cos(nφ).

Since the sine and cosine functions are computationally expensive, in
applications where a low latency is required, the generator is implemented
using lookup tables (LUT). This implementation approach is problematic if the
input space is large. For example, consider the arithmetic unit mentioned in
Section 2: as stated previously, exponents lower than −27 can be dismissed.
However, even if the input angle is restricted to [0, 2π), it is still necessary
to consider 30 different exponent values and 252 different significant values.
A direct implementation would therefore require an LUT of 30 ∗ 252 entries.
Another example is given by DFT engines for long sequences as required in
PLC[10], DVB-T2[11], photon counting[12], and radio astronomy[13]. In such
applications, the coefficient tables are large in comparison with other elements
of the engine [14]. In this contribution, we propose an innovative technique to
reduce the resources required to implement a sine/cosine generator.

1

The rest of the document is organized as follows. In the next section, the
notation used is introduced optimization techniques are presented to reduce
the number of entries of the required LUT to a number proportional to the
input space. In Section 4, optimization techniques are given enable LUTs to be
employed with a total number of entries that grows sublinearly with the input
space. The new proposed technique is introduced in Section 5, and experimental
performance results are shown in Section 6. The last section provides a summary
of the conclusions.

3 Argument Reduction

As mentioned in the introduction, our objective is to efficiently implement a
device that provides sin(nφ) and cos(nφ), where n is an integer provided as an
input to the device, and φ is a constant angle that depends on the application.
Hereinafter, the input of the device will be denoted as I and the number of bits
of I will be denoted as w. Furthermore, the following definitions are used:

Definition 1. A real number φ is trigonometric-rational if and only if φ
π is rational.

For example, the angle φ = −2π/L, used in the definition of the twiddle
factors in Section 2, is trigonometric-rational, while the angle φ = 2−79

mentioned in the arithmetic unit application is not.

Definition 2. The trigonometric Carmichael function of a trigonometric-rational

number φ is the minimum natural number λ̈(φ) such that λ̈(φ)φ
2π is an integer.

This definition is useful in the calculation of the size of the output space
of the generator. This size is the minimum of λ̈(φ) and the size of the input
space. Note that λ̈(0) = 1. In the DFT example, λ̈(φ) is equal to the length
of the transform. The function λ̈ can also be employed to make the following
simplification. Suppose that φ has been defined as a trigonometric-rational
number whose absolute value is very large: |φ| � 2π. In this case, an angle
α with |α| < 2π can be found such that the functionality of the generator, that
is, computing sin(nφ) and cos(nφ), is equivalent to computing sin(nα) and
cos(nα). In order to obtain such α:

1. take the integer k = λ̈(φ)φ
2π

2. take the remainder r of the division k
λ̈(φ)

. Note that k and r have the same

sign and |r| < λ̈(φ).

3. α = r2π
λ̈(φ)

.

Definition 3. The trigonometric Shannon entropy of a trigonometric-rational number
φ is Ḧ(φ) = log2(λ̈(φ)).

If φ is trigonometric-rational and the size of the input space is as large as possible,
that is, λ̈(φ), then the minimum number of bits required to code the input is
dḦ(φ)e.

2

Table 1: Values returned by the circuit specified in [4] when the input I has
exactly three bits (φ = π/23−1 = π/4)

sen(πx) cos(πx)
I S n x = S/4 πx = Sφ nφ = sen(Sφ) = cos(Sφ)

= sen(nφ) = cos(nφ)
000 0 0 0 0 0 0 1
001 1 1 1/4 π/4 π/4 1/

√
2 1/

√
2

010 2 2 2/4 2π/4 2π/4 1 0
011 3 3 3/4 3π/4 3π/4 1/

√
2 −1/

√
2

100 -4 4 −1 −4π/4 4π/4 0 −1
101 -3 5 −3/4 −3π/4 5π/4 −1/

√
2 −1/

√
2

110 -2 6 −2/4 −2π/4 6π/4 −1 0
111 -1 7 −1/4 −π/4 7π/4 −1/

√
2 1/

√
2

Definition 4. φ is trigonometric-binary if and only if it is trigonometric-rational and
Ḧ(φ) is an integer.

The latter definition is relevant since, in many applications, the constant
angle φ is trigonometric-binary. For example, consider the algorithms designed
to compute efficiently the DFT called Fast Fourier Transform (FFT) [15] algorithms:
many of these algorithms require the length of the transform L to be a
power of 2 [16], that is, log2(L) must be an integer, and hence φ must be
trigonometric-binary since Ḧ(φ) = log2(λ̈(−2π/L)) = log2(L). Moreover,
in applications where φ is trigonometric-binary, it is irrelevant whether the
representation of n is either unsigned or two’s complement as long as w ≥ Ḧ(φ).
As an example, consider the circuit specified in [4]. This circuit computes the
sine and cosine of πx where x is a number in the interval [−1, 1) coded in
fixed-point two’s complement. Let S be the value represented by the input I in
integer two’s complement, x = S/2w−1, and hence πx = Sπ/2w−1. Thus, the
circuit computes the sine and cosine of Sφ, where φ = π/2w−1. Let n be the
value represented by I in unsigned integer representation. It is easy to prove
that sin(Sφ) = sin(nφ) and cos(Sφ) = cos(nφ). Therefore, the functionality of
the circuit is equivalent to the computation of the sine and cosine of nφ. This is
exemplified in Table 1 for w = 3.

Hereinafter, an unsigned notation for n is assumed. In the
following subsections, we will see optimization techniques that require a
trigonometric-rational value of φ. In these subsections, the trigonometric
Carmichael function of φ is abbreviated to L.

3.1 Periodicity
If the size of the input space of the device is greater than L, then the

periodicity of the sine and cosine can be used to compute sin(nφ) and cos(nφ)
in the following way:

3

1. Compute n mod L. As noted by [4], if φ is trigonometric-binary, then
this computation has no cost since the result is simply the Ḧ(φ) least
significant bits of the input I.

2. Use a subgenerator to compute the sine and cosine of (n mod L)φ. The
input space of the subgenerator is ZL, smaller than the original input
space, and hence it can be implemented using a smaller LUT.

In the optimization shown in the following subsections, it is assumed that the
input space of the generator is ZL.

3.2 Sign Reduction
If the input space of the device is ZL, then it is possible to implement it

with another subgenerator with the same value of φ but whose input space is
ZbL/2c+1, that is, its size is roughly half of the size of the original input space.
This optimization takes into account the following trigonometric identities:

sin(α) = − sin(2π − α)

cos(α) = cos(2π − α)
(1)

If n ≤ L/2, then the input of the subgenerator is n and its output is the
output of the device. Otherwise, the input of the subgenerator is L − n, the
cosine output of the device is the cosine output of the subgenerator, and the
sine output of the device is the opposite of the sine output of the subgenerator.
Note that, if φ is trigonometric-binary, then L− n can be obtained by simply
taking the two’s complement. In the next subsection, another optimization is
presented for the implementation of the subgenerator when L is even.

3.3 Quadrant Reduction

If L is even and the size of the input space of the device is bL/2c + 1 =
L/2 + 1, then it can be implemented using a subgenerator with the same value
of φ but whose input space is reduced to ZbL/4c+1. This optimization uses the
following trigonometric identities:

sin(α) = sin(π − α)

cos(α) = − cos(π − α)
(2)

If n ≤ L/4, then the input of the subgenerator is n and its output is the
output of the device. Otherwise, the input of the subgenerator is L/2 − n,
the sine output of the device is the sine output of the subgenerator, and
the cosine output of the device is the opposite of the cosine output of the
subgenerator. Again, the computation of L/2− n is simply a two’s complement
if φ is trigonometric-binary. In turn, the optimization described in the next
subsection can be used to implement the subgenerator if L is multiple of 4.

4

3.4 Octant Reduction
Finally, if L is a multiple of 4 and the input space of the device is ZbL/4c+1 =

ZL/4+1, then it can be implemented with a subgenerator with the same value
of φ but whose input space is reduced to ZbL/8c+1 by applying the following
trigonometric identities:

sin(α) = cos(π/2− α)

cos(α) = sin(π/2− α)
(3)

If n ≤ L/8, then the input of the subgenerator is n and its output is the
output of the device. Otherwise, the input of the subgenerator is L/4− n, the
sine output of the device is the cosine output of the subgenerator and the sine
output of the device is the cosine output of the subgenerator. Once more, a
simple two’s complement provides L/4− n if φ is trigonometric-binary.

With the previous optimizations, a sine/cosine generator can be
implemented with an LUT of bL/8c + 1 entries. In order to exemplify, the
circuit described in [4] is implemented using direct access memory as an
LUT. As previously discussed, the functionality of the circuit is equivalent
to computing the sine and cosine of nφ, where n is the number provided by
input I in unsigned integer notation, the angle φ is 2π/2w, and w is the number
of bits of I. In this case, φ is trigonometric-binary. The output is provided
in some type of sign-magnitude notation, such as one of the IEEE 754-1985
floating-point formats. We will also assume that w > 3 so λ̈(φ) is multiple of 4
and an LUT of only 2w−3 + 1 entries is required. The implementation is shown
in Figure 1. The LUT should return the sine and cosine of angles in the range
[0, π/4] and, since they are all positive, there is no need to store the sign bits.
Instead, the sign is computed using a simple XOR gate (4c). In order to prevent
the problem of dealing with a direct access memory with a number of positions
that is not a power of two, the access of the entry of the LUT corresponding to
n = 2w−3 is detected by a simple logic gate (4a) and is treated separately. In
this case the LUT returns the sine and cosine of π/4, that is, 1/

√
2, using a pair

of multiplexers (2b). The address lines of the memory are fed with the w− 3
least significant bits of I or with its two’s complement depending on Iw−3, using
the adder (3) and the multiplexer (2a). The gate (4b) is employed to ascertain
whether the magnitude of the sine and the cosine should be interchanged with
the multiplexers (2c).

5

sel

I
w-4

I
w-5

...I
0

I
w-4

I
w-5

...I
0

0 1

I
w-3

sine cosine

+

direct access memory

1/ √2

1 0

0 1 1 0

I
w-3

I
w-4

I
w-5

I
0

...

...

sel sel

I
w-3

I
w-2sine

magnitude
cosine

magnitude
sine
sign

sel sel

I
w-1

I
w-2

cosine
sign

0 1

2a

2b

3

1

4a

4b 4c

2c

address

I
w-1

Figure 1: Argument reduction employed to optimize a sine/cosine generator.

4 Sublinear Optimizations

The optimizations described in the previous sections have the following
drawbacks:

• They require a subgenerator with an input space greater than λ̈(φ)/8, that
is, its input space grows linearly with λ̈(φ). In many applications, the
subgenerator cannot be directly implemented using an LUT with a number
of entries proportional to the input space since it is excessively large. For
example, even if the octant optimization could be directly applied to the
arithmetic unit mentioned in Section 2, it would only reduce the size of
the input space of the required subgenerator to roughly 30 ∗ 249.

• They can only be directly applied if φ is trigonometric-rational.
Furthermore, the quadrant and octant optimizations require λ̈(φ) to be
even and a multiple of 4, respectively. Hence, in order to apply them in

6

the arithmetic unit of the previous example, a workaround similar to that
shown in [4,17] is necessary. For example, assuming the angle is positive,
the arithmetic unit could execute the following steps to compute the sine
and cosine:

1. Divide the angle by 2π.

2. Take the fixed-point representation I of the fractional part of the
previous division.

3. Return the sine and cosine of nφ, where n is the number represented
by I in unsigned integer notation, φ = 2π

2w , and w is the width of I.

This last step can be carried out by a generator that can be implemented
using the optimizations described in the previous section. However, this
approach has its own drawbacks: first, the cost of a division is introduced;
second, if the angle is not zero, then the result of the division is not rational
and hence its representation cannot be exact and an error is introduced
[17].

In the following subsections, optimizations without these drawbacks are
described.

4.1 Branching
This optimization, used in [4], accepts an arbitrary value of φ, although it

was originally employed for a trigonometric value. When branching is applied,
the generator is implemented using two subgenerators, M0 and M1, which we
call branches. The inputs of the branches are denoted by A(0) and A(1), while
the widths of these inputs are denoted by L(0) and L(1), respectively. These are
chosen so that the width of the input of the generator, I, is w = L(0) + L(1). M0
provides the sine and cosine of integer multiples of φ, that is, the sine and cosine
of n0φ0, where n0 is the value represented by A(0) and φ0 = φ. On the other
hand, M1 provides the sine and cosine of n1φ1, where n1 is the value represented
by A(1) and φ1 = 2L(0)φ. The least significant bits of I are connected to A(0),
while the rest are connected to A(1). Since I is the concatenation of A(0) and
A(1), the value represented by I is

n = n0 + n12L(0) (4)

and hence,

nφ = n0φ + n12L(0)φ = n0φ0 + n1φ1 (5)

Since the sines and cosines of n0φ0 and n1φ1 are provided by M0 and M1,
the sine and cosine of their sum can be computed by applying the following
trigonometric identities:

sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

(6)

Alternatively, we can say that each subgenerator Mk provides the complex
sen(nkφk)i + cos(nkφk) = enkφk i, and the generator can provide the value enφi by

7

computing the complex product en0φ0ien1φ1i. Indeed, computing the product of
two complexes, each of a unitary module, is equivalent to computing the sine
and cosine of the sum of two angles from the sine and cosine of those angles and
implies four real products, a real sum, and a real subtraction. A generalization
of this branching technique was proposed in [18] to compute twiddle factors.
Note that the sum of the sizes of the input spaces of M0 and M1 is minimum
when L(0) and L(1) differ by no more than 1. In this case, such a sum grows
with the square root of the size of the original input space, that is, sublinearly
[18].

4.2 Tree Generator
The implementation of the branches was not detailed in the previous

subsection. In the generator described in [4], the branch M0 computes its output
using the Taylor series, while M1 is implemented with an LUT of affordable
size. Further optimization could be achieved if one or both branches were, in
turn, implemented with sub-branches. This recursive application of the branch
optimization is used by the tree generator described in [1]. In general, the
tree generator requires: a set of subgenerators that we will call leaves; complex
multipliers; and, if the implementation is sequential or pipelined, registers. The
following notation is employed for its description:

• w: width of the input of the tree generator

• I = Iw−1 Iw−2 . . . I1 I0: input of the tree generator

• n = ∑w−1
t=0 It2t: number represented by the input of the tree generator

• m: number of leaf subgenerators employed

• M0,M1,. . . ,Mm−1: the m leaves

• L(k): width of the input of the leaf Mk

• A(k) = A(k)L(k)−1 . . . A(k)0: input of the leaf Mk

• nk = ∑
L(k)−1
t=0 A(k)t2t: number represented by the input A(k)

• SL(k) = ∑k−1
t=0 L(t) =

{
0 if k = 0
L(k− 1) + SL(k− 1) if k > 0

: total number of

input lines of the leaves with index lower than k

• φk: angle defined by φk = (2SL(k))φ

Each leaf subgenerator Mk provides the sine and cosine of nkφk. The leaves are
chosen such that the sum of the widths of their inputs is equal to the width of
the input of the tree generator:

w = SL(m) =
m−1

∑
k=0

L(k) (7)

8

The input lines of each leaf Mk are connected to the input lines of the tree
generator from ISL(k) to ISL(k+1)−1, that is, each input line A(k)t is connected to
It+SL(k):

A(0) = IL(0)−1 . . . I1 I0

A(1) = IL(0)+L(1)−1 . . . IL(0)+1 IL(0)

...

A(m− 1) = Iw−1 . . . ISL(m−1)+1 ISL(m−1)

Hence, the input value n represented by I becomes:

n =
w−1

∑
t=0

It2t =
m−1

∑
k=0

SL(k)+L(k)−1

∑
t=SL(k)

It2t =
m−1

∑
k=0

L(k)−1

∑
t=0

It+SL(k)2
t+SL(k) =

m−1

∑
k=0

L(k)−1

∑
t=0

A(k)t2t+SL(k) =
m−1

∑
k=0

(
L(k)−1

∑
t=0

A(k)t2t)2SL(k) =
m−1

∑
k=0

nk2SL(k)

(8)

and therefore the angle whose sine and cosine must be computed by the tree
generator can be written as:

nφ =
m−1

∑
k=0

nk2SL(k)φ =
m−1

∑
k=0

nkφk (9)

Hence, the angle nφ is the sum of the subangles nkφk or, alternatively, enφi

is the product en0φ0ien1φ1i . . . enm−1φm−1i. Again, since the sine and cosine of the
subangles are provided by the leaves, the sine and cosine of nφ can be computed
with complex multiplications. Taking this into account, the structure of the
generator described in [1] becomes a directed rooted binary tree with m leaves.
Each vertex corresponds to a component whose output is a complex of unitary
module. Each internal vertex has exactly two children, and corresponds to a
complex multiplier that computes the product of the outputs of the components
associated to these children. The components corresponding to the leaves are
the m subgenerators and provide the complex values enkφk i. The output of
the tree generator is the output of the component corresponding to the root
vertex. Hereinafter, the height of the tree will be denoted as h. The following
recommendations may improve the efficiency of the design:

• It is desirable to minimize the height of the tree h in order to reduce latency
and rounding errors. This is achieved if the structure of the generator is a
complete binary tree.

• If each leaf is implemented with an LUT, the total number of entries is
minimum when the width of the inputs of those LUTs differ by no more
than 1. To this end, let q be the quotient obtained by dividing w by m, and
let r be the remainder. A total of r LUTs must have inputs of width q + 1.
The other LUTs must have inputs of width q.

9

• If the above recommendation is followed, then the total number of entries
decreases when m increases. For a fixed height h, the maximum possible
value of m is 2h, and therefore the total number of entries can be minimized
by using 2h leaves.

In order to ascertain the power of this approach, suppose we use a complete
binary tree with height h = blog2(w)c. In this case, the number of subgenerators
m would be no greater than w, and each subgenerator would have no more than
2 input lines. If each subgenerator is implemented with an LUT, then an upper
bound on the total number of entries is 4w, that is, the total number of entries
grows logarithmically with the size of the input space of the tree generator. Note
that a tree generator can be combined with the argument reduction mentioned
in Section 3. For example, argument reduction is first applied in [4] and hence
only a subgenerator with an input space of roughly 1/8 of the original size is
required. The subgenerator is then implemented with a tree generator of height
h = 1.

In the following sub-subsections we will see several optimizations that can
be applied to the tree generator. In the rest of the document φ > 0 is assumed
for the sake of simplicity, although in practice this is not a restriction since
cos(nφ) = cos(n|φ|) and sin(nφ) = sgn(φ) ∗ sin(n|φ|).

4.2.1 Quadrant Restriction

This optimization can be applied to quadrant-restricted sine/cosine
generators, which are defined as follows:

Definition 5. Given a device with an integer input n ≥ 0 that computes one
or more trigonometric functions of nφ, where φ > 0 is a constant, the device is
quadrant-restricted if and only if π

2φ is an upper bound on its input space.

If a sine/cosine generator is quadrant-restricted then it must compute the
sine and cosine of an angle nφ in the interval [0, π/2]. Since both functions are
positive in that interval, the following optimizations are possible:

• As in the example of Section 3, if the generator is implemented with an
LUT there is no need to store the sign bits.

• If it is implemented with a tree generator, no signed adders, subtracters,
nor multipliers are required.

For example, the tree generator used in [4] is quadrant-restricted, and hence
the complex multiplier requires no signed arithmetic components and the LUT
employed to implement the branch M1 does not need to store the sign bits.
Note that, even if a tree generator is not quadrant-restricted, it may contain
quadrant-restricted branches that can benefit from these optimizations.

4.2.2 Leading Zeros of the Sine

This optimization is useful when the sine values of a quadrant-restricted
generator are coded in fixed-point. In this case, an upper bound on the
sine output is sin(nmaxφ), where nmax is the maximum of the input space.
Consequently, if the k most significant bits of the fixed-point representation of

10

sin(nmaxφ) are 0, those bits of the sine output of the generator are always 0,
and the following optimizations are possible:

• If the generator is implemented with an LUT, then there is no need to store
the k most significant bits of the sine.

• If the generator feeds a complex multiplier of a tree generator, the size of
its real multipliers can be reduced.

4.2.3 Leading Ones of the Cosine

This optimization is useful when the cosine values of a quadrant-restricted
generator are coded in fixed-point using all the bits for the fractional part. In
this case, the representable value nearest to cos(0) = 1 corresponds to the word
with all the bits equal to 1. A lower bound on the cosine output is cos(nmaxφ),
where nmax is the maximum of the input space, and therefore, if the k most
significant bits of the fixed-point representation of cos(nmaxφ) are 1, those bits
of the cosine output of the generator are always 1. Hence, if the generator is
implemented with an LUT, there is no need to store the k most significant bits
of the cosine.

To exemplify these optimizations, suppose a generator must provide the
sine and cosine of nφ in fixed-point notation with 8 fractional bits and no
integer bits rounding to the nearest representable value. In this example φ =
2π/211 = π/210, that is, it is trigonometric-binary and λ̈(φ) is a multiple of 4,
and hence we first apply argument reduction and treat the case n = 28 separately
as in the example of Section 3. A subgenerator still has to be subsequently
implemented with an input space of size 28 (w = Ḧ(φ)− 3 = 8). We implement
this subgenerator with a tree generator of height h = 1, and therefore there
are 2 leaves (m = 2h = 2) as shown in Figure 2. Since this tree generator is
quadrant-restricted it does not require signed arithmetic components. Each
leaf is implemented with direct access memory (5) of height 24. Note that the
sine/cosine values must be stored with a precision of 17 bits to compensate for
rounding errors. The leaf M0 provides the sines and cosines of the multiples
of φ0 = 20φ = π/210, while the leaf M1 provides the sines and cosines of the
multiples of φ1 = 24φ = π/26. The greatest angle whose sine and cosine is
stored in M0 is 15π/210. The 4 most significant bits of the representation of
the sine of this angle are 0 and, since the generator is quadrant-restricted, the 4
most significant bits of the other representations of the sines stored in M0 are
also 0, and therefore there is no need for them to be stored. On the other hand,
the 9 most significant bits of the representation of the cosine of that angle are
equal to 1, and therefore there is no need for them to be stored either. Similar
optimizations can be applied to M1, but in this case only one bit can be saved.
Note that we only need two integer multipliers of size 13× 17 (6a) and two of
size 17× 17 (6b) instead of four multipliers of size 17× 17 thanks to the leading
zeros of the sine. The leading ones of the cosine cannot be employed to reduce
the size the arithmetic components in a similar way. In the last stage, an adder
(3) provides the sine of the tree generator and a subtracter (7) provides the
cosine.

11

sin(n×Ф)

+ -

X XX X

6a 6b 6a

3 7

 ad
d

re
ss lin

e
s

I0

I1

I2

I3

0

1

2

3

M1
location 0 sin(0×Ф1) cos(0×Ф1)

location 1 sin(1×Ф1) cos(1×Ф1)

location 2 sin(2×Ф1) cos(2×Ф1)

location 3 sin(3×Ф1) cos(3×Ф1)

location 4 sin(4×Ф1) cos(4×Ф1)

location 5 sin(5×Ф1) cos(5×Ф1)

location 6 sin(6×Ф1) cos(6×Ф1)

location 7 sin(7×Ф1) cos(7×Ф1)

location 8 sin(8×Ф1) cos(8×Ф1)

location 9 sin(9×Ф1) cos(9×Ф1)

location 10 sin(10×Ф1) cos(10×Ф1)

location 11 sin(11×Ф1) cos(11×Ф1)

location 12 sin(12×Ф1) cos(12×Ф1)

location 13 sin(13×Ф1) cos(13×Ф1)

location 14 sin(14×Ф1) cos(14×Ф1)

location 15 sin(15×Ф1) cos(15×Ф1)

data lines
32..16

data lines
15..0

 ad
d

re
ss lin

e
s

I4

I5

I6

I7

0

1

2

3

111111111 1

M0
location 0 sin(0×Ф0) cos(0×Ф0)

location 1 sin(1×Ф0) cos(1×Ф0)

location 2 sin(2×Ф0) cos(2×Ф0)

location 3 sin(3×Ф0) cos(3×Ф0)

location 4 sin(4×Ф0) cos(4×Ф0)

location 5 sin(5×Ф0) cos(5×Ф0)

location 6 sin(6×Ф0) cos(6×Ф0)

location 7 sin(7×Ф0) cos(7×Ф0)

location 8 sin(8×Ф0) cos(8×Ф0)

location 9 sin(9×Ф0) cos(9×Ф0)

location 10 sin(10×Ф0) cos(10×Ф0)

location 11 sin(11×Ф0) cos(11×Ф0)

location 12 sin(12×Ф0) cos(12×Ф0)

location 13 sin(13×Ф0) cos(13×Ф0)

location 14 sin(14×Ф0) cos(14×Ф0)

location 15 sin(15×Ф0) cos(15×Ф0)

data lines
20..8

data lines
7..0

sin(n0×Ф0)[-5..-17] cos(n0×Ф0)[-1..-17]

5
sin(n1×Ф1)[-1..-17] cos(n1×Ф1)[-1..-17]

13 8 17 16

cos(n×Ф)

Figure 2: Optimization of a quadrant-restricted tree generator of height 1.

5 Complement Generator

In the optimizations described in Section 4, the angle whose sine/cosine
must be computed is decomposed into two subangles, A and B. Two
subgenerators, called branches, are employed to compute the sine/cosine of A
and B, and then the sine/cosine of A + B is computed by applying the identities
6. This method presents the following drawbacks:

• If the maximum value of one of the angles A or B is small, then its sine
is close to 0, while its cosine is close to 1. In this case, the product
cos(A) cos(B) can be orders of magnitude greater than sin(A) sin(B),
and hence smearing may occur when computing cos(A + B) =
cos(A) cos(B)− sin(A) sin(B).

12

• Unlike the optimization described in sub-subsection 4.2.2, the one
described in 4.2.3 fails to help in the reduction of the required arithmetic
components.

These problems can be solved by using a sine/complement generator. In the
same way as a sine/cosine generator, a sine/complement generator receives an
integer n and computes trigonometric functions of nφ, where φ is a constant.
The only difference lies in it computing the complement of the cosine of nφ instead
of its cosine. This is defined as follows:

Definition 6. The complement of the cosine of x is com(x) = 1− cos(x)

It is possible to compute the sine and the complement of the cosine of the
sum of two angles, A and B, from the sines and complements of the cosines
of those angles by using a device called a trigonometric adder [2]. Similar to the
complex multiplier, the trigonometric adder can be implemented with adders (3),
subtracters (7), and multipliers (6) as depicted in Figure 3. This trigonometric
adder implementation uses the following trigonometric identities derived from
those of 6:

sin(A + B) = sin(A) + sin(B)− [sin(A) com(B) + com(A) sin(B)]
com(A + B) = com(A) + com(B) + [sin(A) sin(B)− com(A) com(B)]

(10)

X

X

X

X

-

+

+

+

-

+

sine of A

complement of the cosine of A

sine of B complement of the cosine of B

sine of A+B
complement of the cosine of

A+B

3

3

3

3

7

7

6

6

6

6

Figure 3: Implementation of a trigonometric adder.

13

Trigonometric adders enable the implementation of a sine/complement
generator using a tree structure similar to that described in subsection 4.2.
Such an implementation, described in [3], requires a set of sine/complement
subgenerators (the leaves of the tree) as well as trigonometric adders (the
internal vertex). Furthermore, if the generator is quadrant-restricted, then
optimizations similar to those described in subsection 4.2 can be applied:

• Since the complement of the cosine is also positive in [0, π/2], the
trigonometric adders can be implemented without signed arithmetic
components.

• If fixed-point representation is used, the leading zeros of the sines make it
possible to reduce the size of the integer multipliers and that of the leaves.

In this case, the optimization described in sub-subsection 4.2.3 cannot be applied
but, if fixed-point representation is used, we can use the following optimization
that we call leading zeros of the complement: if a branch is quadrant-restricted,
an upper bound on its complement output is com(nmaxφ), where nmax is the
maximum of the input space of the branch. Therefore, if the k most significant
bits of the fixed-point representation of com(nmaxφ) are 0, those bits of the
complement output of the branch are always 0. If the branch is implemented
with an LUT, then there is no need to store those bits. Note that, unlike the
optimization described in 4.2.3, this optimization enables a reduction of the size
of the required multipliers.
A sine/cosine generator can be implemented with a sine/complement generator
by simply adding a trivial arithmetic circuit to subtract the complement of the
cosine from 1. In fact, if fixed-point notation is used, then this arithmetic circuit
is not necessary since the trigonometric adder corresponding to the root can be
easily modified to provide cos(nφ) instead of com(nφ) at no additional cost. To
this end, instead of com(nφ), the root vertex computes its opposite using the
following equation:

− com(A + B) = [com(A) com(B)− sin(A) sin(B)]− [com(A) + com(B)]
(11)

subsequently 1 can be added to − com(nφ) in order to obtain cos(nφ). Note
that this last operation is merely toggling the integer bit of the representation of
− com(nφ). If a sine/cosine generator or a branch of it is quadrant-restricted,
then it should be implemented employing a complement generator due to the
following reasons:

• The smearing problems are lessened by using the formulae 10.

• In contrast to the leading ones of the cosine, the leading zeros of the
complement make it possible to reduce the size of the multipliers.

As an example, Figure 3 shows how to implement a sine/cosine generator
with an input I of width w = 11 using a sine/complement generator whose
topology is a tree of height h = 2. The sine/complement generator uses m =
2h = 4 subgenerators, M0, M1, M2 and M3, which have been implemented
with direct access memories (8). Following the recommendations of subsection
4.2 to minimize the total number of memory locations, M3 has 2 address lines
(q = bw/mc = 2) and each of the other 3 remaining memories (r = w−mq = 3)

14

has an additional address line, and therefore L(3) = 2 and L(2) = L(1) =
L(0) = 3. Hence, SL(0) = 0, φ0 = 20φ, SL(1) = 3, φ1 = 23φ, SL(2) = 6,
φ2 = 26φ, SL(3) = 9, and φ3 = 29φ. Each memory Mk contains the sines
and the complement of the cosines of the multiples of φk = (2SL(k))φ, and
therefore its output provides the sine and the complement of the cosine of
nkφk, where nk is the value of its address lines. Each address line t of each
memory Mk is connected to It+SL(k), that is, the inputs of M0, M1, M2 and M3
are connected to I2 I1 I0, I5 I4 I3, I8 I7 I6 , and I10 I9, respectively. Hence, n =

n02SL(0) + n12SL(1) + n22SL(2) + n32SL(3) =⇒ nφ = n02SL(0)φ + n12SL(1)φ +

n22SL(2)φ+ n32SL(3)φ = n0φ0 + n1φ1 + n2φ2 + n3φ3. Three trigonometric adders
are used (9). Those connected directly to the memories are employed to compute
the sine and the complement of the cosine of the angles n0φ0 + n1φ1 and n2φ2 +
n3φ3. The other adders computes the sine and the complement of the cosine of
nφ = n0φ0 + n1φ1 + n2φ2 + n3φ3. A trivial arithmetic circuit (10) subtracts the
complement of the cosine of nφ from 1 to obtain the cosine of nφ.

T
sin(n0×Ф0),com(n0×Ф0)

M0

location 0 sin(0×Ф0),
com(0×Ф0)

location 1 sin(1×Ф0),
com(1×Ф0)

location 2 sin(2×Ф0),
com(2×Ф0)

location 3 sin(3×Ф0),
com(3×Ф0)

location 4 sin(4×Ф0),
com(4×Ф0)

location 5 sin(5×Ф0),
com(5×Ф0)

location 6 sin(6×Ф0),
com(6×Ф0)

location 7 sin(7×Ф0),
com(7×Ф0)

 address lines

 data lines

I0

I1

I2

8

9

M1

location 0 sin(0×Ф1),
com(0×Ф1)

location 1 sin(1×Ф1),
com(1×Ф1)

location 2 sin(2×Ф1),
com(2×Ф1)

location 3 sin(3×Ф1),
com(3×Ф1)

location 4 sin(4×Ф1),
com(4×Ф1)

location 5 sin(5×Ф1),
com(5×Ф1)

location 6 sin(6×Ф1),
com(6×Ф1)

location 7 sin(7×Ф1),
com(7×Ф1)

 address lines

 data lines

8

M2

location 0 sin(0×Ф2),
com(0×Ф2)

location 1 sin(1×Ф2),
com(1×Ф2)

location 2 sin(2×Ф2),
com(2×Ф2)

location 3 sin(3×Ф2),
com(3×Ф2)

location 4 sin(4×Ф2),
com(4×Ф2)

location 5 sin(5×Ф2),
com(5×Ф2)

location 6 sin(6×Ф2),
com(6×Ф2)

location 7 sin(7×Ф2),
com(7×Ф2)

 address lines

 data lines

8

I9

I10

M3

location 0 sin(0×Ф3),
com(0×Ф3)

location 1 sin(1×Ф3),
com(1×Ф3)

location 2 sin(2×Ф3),
com(2×Ф3)

location 3 sin(3×Ф3),
com(3×Ф3)

 address lines

 data lines

8

T

T

9

9

0

1

2

0

1

2

0

1

2
0

1

sin(n1×Ф1),com(n1×Ф1) sin(n2×Ф2),com(n2×Ф2) sin(n3×Ф3),com(n3×Ф3)

sin(n0×Ф0+n1×Ф1),com(n0×Ф0+n1×Ф1)

1-

com(n×Ф)

sin(n×Ф) cos(n×Ф)

10

I3

I4

I5

I6

I7

I8

sin(n2×Ф2+n3×Ф3),com(n2×Ф2+n3×Ф3)

Figure 4: sine/cosine generator implemented with a sine/complement
generator.

6 Results

In order to measure the possible enhancements that complement generators
may provide, several twiddle factor generators are implemented in a
field-programmable gate array (FPGA) chip. They provide an output rounded

15

Table 2: DSP usage of the twiddle factor generators with a tree structure of
height 1

DFT length sine/cosine DSPs sine/complement DSPs saving
215 12 7 41.7%
216 12 8 33.3%
217 12 8 33.3%
218 16 12 25.0%
219 16 12 25.0%
220 16 12 25.0%

Table 3: DSP usage of the twiddle factor generators with a tree structure of
height 2

DFT length sine/cosine DSPs sine/complement DSPs saving
221 59 33 44.1%
222 71 47 33.8%
223 77 51 33.8%
224 76 51 32.9%
225 77 53 31.2%
226 79 53 32.9%

to the nearest representable value in fixed-point with 16 fractional bits and
no integer bits. All the considered sequence lengths are powers of 2 and it is
therefore possible to apply argument reduction and only quadrant-restricted
generators are needed. The sequence lengths range from 215 to 226. The
generators corresponding to lengths in the range [215, 220] are implemented
using trees of height 1, while those corresponding to lengths in the range
[221, 226] are implemented with trees of height 2. The recommendations of
subsection 4.2 are followed to minimize the size of the leaves. The FPGA
chip used is a Xilinx Virtex 7 XC7VX485T-2FFG1761. Synthesis is carried out
with the Vivado Design Suite tool of Xilinx version 2017.2.1 using the default
options. The leaves are implemented directly with LUTs, while the multipliers
are implemented with the digital signal processing (DSP) blocks of the FPGA.
As stated earlier, the complement implementation enables a reduction of the
size of the required multipliers. Hence, the number of DSP blocks required is
remarkably reduced in the complement implementations. The reduction ranges
from 25% to 41.7% in the trees of height 1 and from 31.2% to 44.1% in the trees
of height 2 as shown in Table 2 and Table 3 respectively.

7 Conclusions

In this document, we propose a sine/cosine computation technique. In the
proposed technique, the complement of the cosine is computed before the cosine
itself in order to reduce the size of the required multiplications. Several twiddle
factor generators are implemented in a Xilinx Virtex 7 XC7VX485T-2FFG1761

16

FPGA chip using this technique and the traditional technique. The proposed
technique enables a reduction of the number of required DSP blocks by between
25% and 44%. This remarkable saving must be taken into account when
designing sine/cosine generators.

The following abbreviations are used in this document:

ASIC Application-Specific Integrated Circuit
DCT Discrete Cosine Transform
DSP Digital Signal Processing
DFT Discrete Fourier Transform
DST Discrete Sine Transform
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
IDCT Inverse Discrete Cosine Transform
IDST Inverse Discrete Sine Transform
LUT Look Up Table

References

[1] Guerrero, D.; Viejo, J.; Ruiz-de Clavijo, P.; Juan, J.; Bellido, M.J.; Millan,
A.; Ostua, E.; Villar, J.I.; Quiros, J.; Muñoz, A. Digital electronic
circuit for calculating sines and cosines of multiples of an angle.
WO2018104566A1, 2018.

[2] Guerrero, D.; Millan, A.; Juan, J.; Viejo, J.; Bellido, M.J.; Ruiz-de
Clavijo, P.; Ostua, E. Dispositivo electrónico calculador de funciones
trigonométricas. P201831134, 2019.

[3] Guerrero, D.; Millan, A.; Juan, J.; Viejo, J.; Bellido, M.J.; Ruiz-de
Clavijo, P.; Ostua, E. Dispositivo electrónico calculador de funciones
trigonométricas y usos del mismo. P201831133, 2019.

[4] de Dinechin, F.; Istoan, M.; Sergent, G. Fixed-point Trigonometric
Functions on FPGAs. SIGARCH Comput. Archit. News 2014, 41, 83–88.
doi:10.1145/2641361.2641375.

[5] Lin, K.; Hou, C. Implementation of trigonometric custom functions
hardware on embedded processor. Proceedings of the IEEE 2nd Global
Conference on Consumer Electronics (GCCE 2013); , 2013; pp. 155–157.
doi:10.1109/GCCE.2013.6664782.

[6] Huang, H.; Xiao, L.; Liu, J. CORDIC-Based Unified Architectures for
Computation of DCT / IDCT / DST / IDST. Circuits, Systems, and Signal
Processing 2014, 33, 799–814. doi:10.1007/s00034-013-9661-9.

[7] Goldberg, D. What Every Computer Scientist Should Know About
Floating-point Arithmetic. ACM Comput. Surv. 1991, 23, 5–48.
doi:10.1145/103162.103163.

[8] Lefevre, V.; Muller, J. Worst cases for correct rounding of the
elementary functions in double precision. Proceedings of the 15th

17

https://doi.org/10.1145/2641361.2641375
https://doi.org/10.1109/GCCE.2013.6664782
https://doi.org/10.1007/s00034-013-9661-9
https://doi.org/10.1145/103162.103163

IEEE Symposium on Computer Arithmetic. ARITH-15 2001; , 2001; pp.
111–118. doi:10.1109/ARITH.2001.930110.

[9] Kulshreshtha, T.; Dhar, A.S. CORDIC-Based High Throughput
Sliding DFT Architecture with Reduced Error-Accumulation.
Circuits, Systems, and Signal Processing 2018, 37, 5101–5126.
doi:10.1007/s00034-018-0810-z.

[10] IEEE Standard for Broadband over Power Line Networks: Medium
Access Control and Physical Layer Specifications. https://standards.
ieee.org/content/ieee-standards/en/standard/1901-2010.html,
accessed on 15 April 2019.

[11] Lin, S.Y.; Wey, C.L.; Shieh, M.D. Low-cost FFT processor for
DVB-T2 applications. IEEE Transactions on Consumer Electronics 2010,
56, 2072–2079. doi:10.1109/TCE.2010.5681074.

[12] Stanton, R.H. Photon Counting - One More Time. Proceedings of the
31st Annual SAS Symposium on Telescope Science; , 2012; pp. 177–184.

[13] Nakahara, H.; Nakanishi, H.; Sasao, T. On a Wideband Fast Fourier
Transform for a Radio Telescope. SIGARCH Comput. Archit. News 2012,
40, 46–51. doi:10.1145/2460216.2460225.

[14] Qureshi, F.; Gustafsson, O. Analysis of twiddle factor memory
complexity of radix-2i pipelined FFTs. Proceedings of the
2009 Conference Record of the Forty-Third Asilomar Conference
on Signals, Systems and Computers; , 2009; pp. 217–220.
doi:10.1109/ACSSC.2009.5470121.

[15] Nash, J.G. Distributed-Memory-Based FFT Architecture and FPGA
Implementations. Electronics 2018, 7. doi:10.3390/electronics7070116.

[16] Cooley, J.W.; Lewis, P.A.W.; Welch, P.D. Historical notes on the
fast Fourier transform. Proceedings of the IEEE 1967, 55, 1675–1677.
doi:10.1109/PROC.1967.5959.

[17] Smith, R.A. A continued-fraction analysis of trigonometric argument
reduction. IEEE Transactions on Computers 1995, 44, 1348–1351.
doi:10.1109/12.475133.

[18] Kang, H.; Yang, B.; Lee, J. Low complexity twiddle factor multiplication
with ROM partitioning in FFT processor. Electronics Letters 2013,
49, 589–591. doi:10.1049/el.2013.0689.

18

https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1007/s00034-018-0810-z
https://standards.ieee.org/content/ieee-standards/en/standard/1901-2010.html
https://standards.ieee.org/content/ieee-standards/en/standard/1901-2010.html
https://doi.org/10.1109/TCE.2010.5681074
https://doi.org/10.1145/2460216.2460225
https://doi.org/10.1109/ACSSC.2009.5470121
https://doi.org/10.3390/electronics7070116
https://doi.org/10.1109/PROC.1967.5959
https://doi.org/10.1109/12.475133
https://doi.org/10.1049/el.2013.0689

	Business Proposal
	Introduction
	Argument Reduction
	Periodicity
	Sign Reduction
	Quadrant Reduction
	Octant Reduction

	Sublinear Optimizations
	Branching
	Tree Generator
	Quadrant Restriction
	Leading Zeros of the Sine
	Leading Ones of the Cosine

	Complement Generator
	Results
	Conclusions

