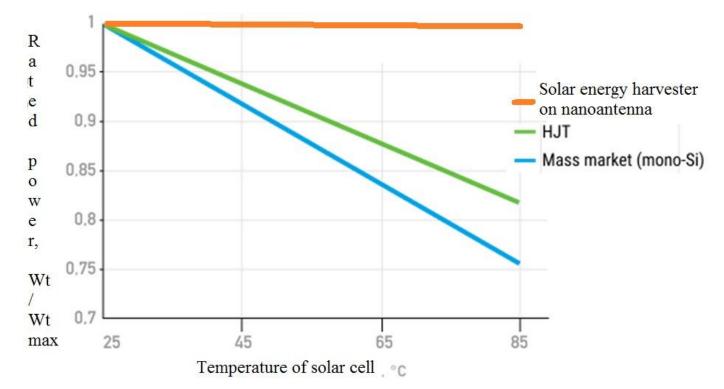

SOLAR ENERGY HARVESTER ON NANOANTENNA, EFFICIENCY FACTOR BETTER THAN 50%

PROBLEM (MARC PEREZ SLIDE)



http://solarmarketpa thways.org/wpcontent/uploads/2017 /08/NSC-Achieving-High-PV-Penetration-160526.pdf

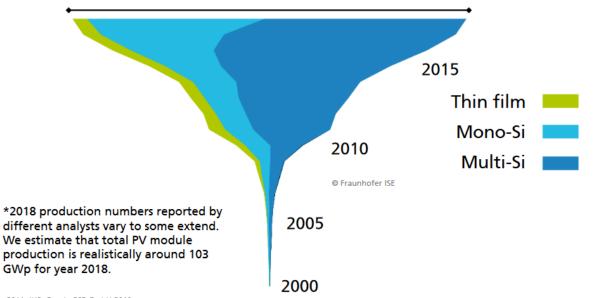
$\begin{array}{l} PROBLEM \ 1 \\ SILICON MONOCRYSTAL SOLAR CELL EFFICIENCY FACTOR \\ IS \ 20\% \end{array}$

PROBLEM 2 Loss of efficiency factor when solar cell is heated

4

PROBLEM

We collect only small part of solar energy


SOLVE. NANOANTENNA (OPTICAL RECTENNA)

Technology has approached the possibility of realizing an idea

https://en.wikipedia.org/wiki/Optical rectenna

An **optical rectenna** turns electromagnetic waves into direct current electricity. While rectennas have long been used for radio waves or <u>microwaves</u>, an optical rectenna would operate the same way but with infrared or visible light, turning it into electricity.

Annual PV Production by Technology Worldwide (in GWp)

About 103* GWp PV module production in 2018

Data: from 2000 to 2010: Navigant; from 2011: IHS. Graph: PSE GmbH 2019

20

Electricity generation

6

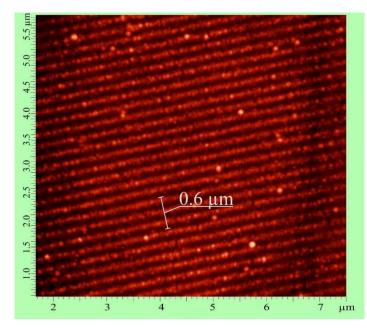
Source: SolarPower Europe. a country with roaded 2020

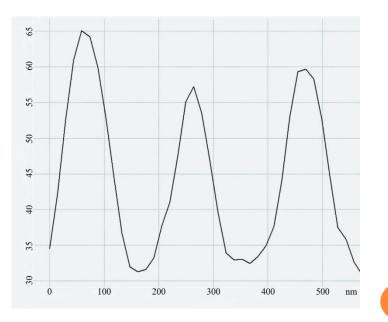
As of 2040, solar PV will become the dominant source of electricity generation across the three scenarios, and by 2050 it will reach at least 48% in the Laggard scenario and up to 63% in the Leadership scenario

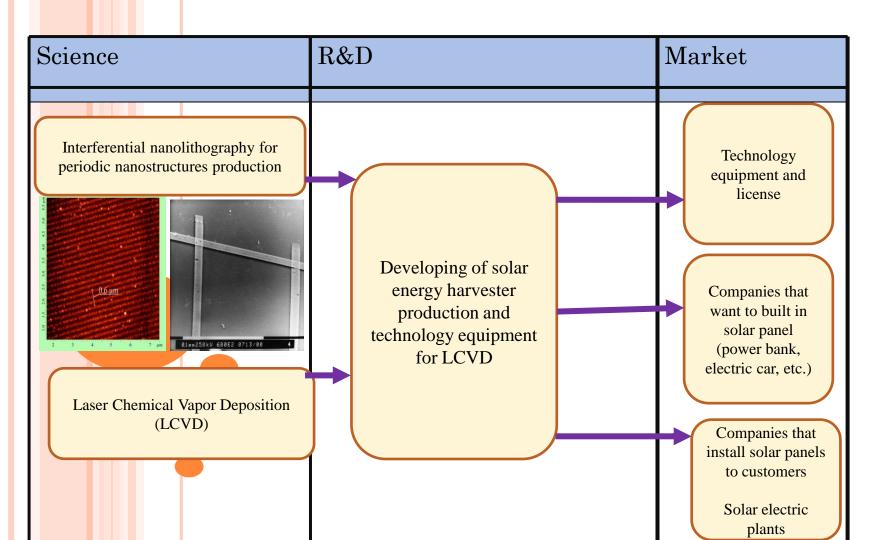
UNIQUE SELLING PROPOSITION

Collect twice more energy at the same costs and square

•1. Efficiency factor better than 50%, theoretical 85%

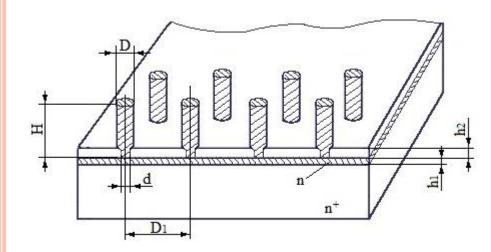

•2. Better than 500 Watt per square meter (Wt/m2)

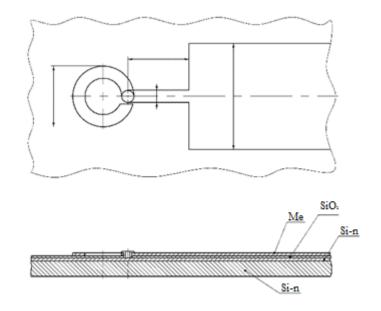

•3. Loss of efficiency factor when heating - 0


Laser nanosecond microtechnologies book, established 2003 Our CTO Dmitry Chesnokov is co-author В.В. ЧЕСНОКОВ Е.Ф. РЕЗНИКОВА Д.В. ЧЕСНОКОВ

ЛАЗЕРНЫЕ НАНОСЕКУНДНЫЕ МИКРОТЕХНОЛОГИИ

LASER INDUCED PERIODIC SURFACE NANOSTRUCTURES ONE STAGE LCVD PROCESS




ROADMAP

		Budget, USD	2020	2021	2022	2023	2024	2025
	Schottky diode LCVD technology (prototype) nanoantenna LCVD technology (prototype)							
Pre-seed	optical rectenna prototype	100 000						
	technology equipment development, small production, sales	3 000 000						
Round A	mass production technology global market	50 000 000						

GOAL OF OPTICAL RECTENNA PROTOTYPE

Solar energy harvester element production technology at least 50 cm2. One step process to get matrix of nanoantennas (optical rectennas)

Nurlan Usubaliev Director (CEO)	Dmitry Chesnokov Chief Designer, PhD (CTO)	Anton Pankratov USA representative	
Entrepreneur with 5 year experience Engineering base education 10 years in b2b sales/marketing	Over 30 years in industry The author of 37 patents Head of 22 RnD for last 15 years	Entrepreneur with Over 10 year experience Advertising and marketing	

THANKS FOR ATTENTION!

Technology Engineering Company llc <u>Techenginco.com</u>

Novosibirsk, Russian Federation Nurlan Usubaliev <u>Nurlan@kf.jet.kg</u> +7 913 900 0474

New York city, USA, Anton Pankratov, +1 (347) 264 4254

SONO MOTOR'S VISION (EXAPMLE)

TABLE OF COMPARISON

technology	polysilicon	Monosilicon	Heterojunction	Nanoantenna
Efficiency	17%	21%	24%	better than 50%
Energy per				
m2	170 W/m2	200 W/m2	190 W/m2	better than 500 W/m2
Temperature				
Coefficient of				
Pmax, %/°C	-0,4	-0,36	-0,31	0
				we expect in mass
Price	Х	1,4*X	2,8*X	production 1,4X