US008560305B1

a2z United States Patent (10) Patent No.: US 8,560,305 B1
Georgiev (45) Date of Patent: Oct. 15,2013
(54) LOGIFOLG 7,844,562 B2* 11/2010 Gongetal.cccoccooeecer. 706/47
2007/0299802 Al* 12/2007 Kwok 706/52
(76) Inventor: Hristo Georgiev, Walenstadt (CH) 2009/0327811 AL* 12/2009 Hofford 714126
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Talivaldis Ivars Smits
U.S.C. 154(b) by 72 days.
57 ABSTRACT
(21) Appl. No.: 13/472,496 LOGIFOLG is a system and method for finding implicit
information that is not explicitly mentioned in the sentence,
(22) Filed: May 16, 2012 not contained in the synonyms of the particular word, not
present in the concept the word belongs to, not found with
(51) Int.CL statistical or concordance based analysis. Nevertheless, this
GOGF 17/27 (2006.01) implicit information is present and understood, implicitly,
GO6N 5/02 (2006.01) consciously or unconsciously, by everybody who reads the
(52) US.CL text. LOGIFOLG uses a computer software process, such as
USPC e, 704/209; 706/47 computer-executable program code, to discover this implicit
(58) Field of Classification Search information. The steps in this process are: analyzing user’s
None written input, up to five successive and non-successive words
See application file for complete search history. in a sequence, understanding the meaning of the written
input, finding implicit information in the written input and
(56) References Cited finally, displaying the implicit information as a variant of the

U.S. PATENT DOCUMENTS

RE39,302 E * 9/2006 Lanieretal. 706/58
7,313,515 B2* 12/2007 Crouchetal. 704/9
7,447,667 B2* 11/2008 Gongetal. 706/47
7,725,321 B2* 5/2010 Bennettc.ccoeeinie 704/257

original sentence. The subject matter of the invention deals
with Artificial Reasoning, namely inductive and deductive
reasoning, based on Natural Language written sentences. The
medium is non-transitory.

3 Claims, No Drawings

US 8,560,305 B1

1
LOGIFOLG

TECHNICAL FIELD

Natural Language Text Processing, Artificial Intelligence,
Robotics.

DESCRIPTION OF THE INVENTION

Inferences are made when a human being or computer
software process finds unavailable information in Natural
Language sentences. Our intelligent computer-executable
program has an inductive and deductive automated reasoning.
It can find and display implicit information, that is not explic-
itly mentioned in the text, not contained in the synonyms of
the particular word, or present in the concept the word
belongs to. No statistical analysis or concordance based
analysis can detect this information. Nevertheless, this
implicit information is present and understood, implicitly,
consciously or unconsciously, by everybody who reads the
text. The inductive reasoning of our computer-executable
program is based to a great extent on its deductive reasoning,
present in the word classes by default. The basic principle of
the deductive reasoning is that if something is true of a class
of things in general, this truth applies to all members of that
class.

Therefore, we do not have difficulties to teach our program
that all living beings, including all humans, are mortal or that
all birds can fly. If we list, in our database, all humans, who
have lived 2500 years ago, including Socrates and Agamem-
non, our computer-executable program will be able to deduce
that Socrates and Agamemnon are long dead, since no human
being can live that long. We need a simple rule in the program
to do that, if we have this information in our database.

Our computer-executable program is capable of finding
implicit information in simple sentences, also in complex,
compound sentences. The understanding of the meaning of
the sentence is based upon successive and non-successive
words, up to five in a sequence, within the sentence or the
clause. For example if we type in “John shot a partridge”, the
program will print out “John is a hunter”, because partridge is
a wild game bird, if one types in “John slaughters chicken”,
the program will print out “John is a butcher”, because
chicken are domestic poultry, if one types in “John killed
Susan”, the program will print out “John is a murderer”,
“Susan is dead”. If we type in “John married Ann”, the pro-
gram will print out “John is husband of Ann”, “Ann is wife of
John”, etc.

One can substitute the names John, Ann, etc, with any other
name (contained in our database) or with any human being,
male or female (man, woman, priest, president, etc.). Also,
one can substitute partridge with any other wild game or
chicken with any other domestic animal to achieve the same
result. Besides, our computer-executable program can turn
the sentence and preserve its meaning, for example, if we type
in “John is smaller than Ali.”, the program will display “Ali is
bigger than John”, if we type in “Alexander breeds pigs”, the
program will display “The pigs are bred by Alexander”, etc.

Languages: English and German. With the same method,
one can develop similar software programs for other lan-
guages. Runs on all versions of Windows, also on Windows 7
and Windows 64 Bit.

Only non-transitory computer-readable media are within
the scope of the application.

PROBLEM SOLVED BY THE INVENTION AND
SOLUTION TO THIS PROBLEM

There are many problems that can be solved with this
invention. The discovery of the implicit information con-

20

25

30

35

40

45

50

55

60

65

2

tained in the sentence or in the text will help the search
engines find more accurately the information we are looking
for. Finding the right information contained in a huge data-
base in shortest possible time is the main problem faced by all
search engines. LOGIFOLG helps to solve exactly this prob-
lem, by providing additional information contained in the
text, information not written in words or present in the syn-
onyms and in the concepts of the existing words. A computer-
executable program, capable of artificial reasoning can find
applications in many other technical areas where independent
and reliable decision making, based on written information, is
required. For example, in the artificial brains of robots to
enable them take independent decisions in a constantly
changing environment, where independent reasoning, based
on logical inferences upon the information gathered, will
trigger the right decision at the right moment.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

The programming language used in the invention is C/C++.
The morphology of the word is described in a *.cpp file as
follows
if (morsyn=G_SYN)
//if, morphologically, this is a participle

if (morsyn == G_SYN
// if, morphologically, this is a participle

if (subflx == 2 && dicsyn 1=V_SYN && dicsyn 1= ZSYN &&
dicsyn !=_D_SYN && dicsyn !I=A_SYN &&
dicsyn !=_E_SYN && dicsyn !=_V_SYN)
// if, morphologically, this is a participle, ending in -ing and it is not
// ambiguous, not registered in the database as an adverb or an adjective

wrd->syn = (uchar)dicsyn;
// then it is, as registered in the database
¥
else
wrd->syn = ASYN;
// if not, then it is an adjective

// ete. for all parts of speech
and in an *.h file, as follows
struct MORPH FLEX en_endflexn[] =

“est”, “d2”, NULL, 3,
“al”, “d2”, NULL, 2,
“ally”, “d2”, NULL, 4,
“ly”, “D”, NULL, 2,

“d”, V7, NULL, 1,

g V7, NULL, 1,

“d”, “E”, NULL, 1,
“ed”, “E”, NULL, 2,
g7, “n”, NULL, 1,
// ete.

NULL

%

// where est, ally, ed, s, etc. are word endings, typical for a particular
// part of speech (verb, adverb, past participle, noun plural, etc.)

The syntax (Part of Speech, sometimes, Part of the Sen-
tence of the word or phrase) is described in a *.cpp file as
follows

case 3:
if (strrchr(wrdm->cw, N_SYN)) {
wrdm->syn = N_SYN;
// if the last word in this sequence is registered in the database as ambiguous

US 8,560,305 B1

3

-continued

4

-continued

// (noun or verb), then it is a noun, if preceded by a verb

CopySyn();
i = mpos; continue;
// and in the respective *.h file, as follows:
{ “[Veu]<dkKD>V”, NULL, 3},
case 4:
for (x =1i; x <mpos && wp[x]->syn !=_D_SYN; x++);
if (wp[x]->S.B.time && (wrdm->$.B.time || wrdm->esyn ==
I_SYN) && wp[x]->E.W.noun) || (wp[x]->E.W.noun && wp[x]->
E.W.beforen))
// if the word, as defined, meets the above conditions, it is a noun
wp[x]->syn = N_SYN;
else
wp[x]->syn = A_SYN;
// else, it is an adjective
~ CopySyn();
i = mpos; continue;
// and in the respective *.h file, as follows:

{<[TO]d~-", NULL, 4}, /*the well (N) */
{“dN”, NULL, 4}, /*early sixties */
{<[PV]d[ZG]?, NULL, 4),

case 32:

if (wrdp->E.W.adj && !wrdp->numb)

wrdp->syn = ASYN;
CopySyn();

i = mpos; continue;
// and in an *.h file, as follows
{“A[C]<KD>[ZN][;)JPB*]”, NULL, 32},
// we define individual words and parts of speech as follows
{“pendingT”, “P, },
// pending, before an article, is a preposition
// ete.

The meaning, the semantic component of the word or
phrase, is described in a *.cpp file as follows

case 'q':
G->W.illness = 1;
break;
// semantic code for the concept illness, including all kinds of illnesses
case 'Y
G->W.hit=1;
break;
// semantic code for the concept hit(ting), including all synonyms of hit
case 2"
G->W.writing = 1;
break;
// semantic code for the concept write (writing), including all synonyms
/] ete.

20

25

30

35

40

45

In an *.inl file we declare the same meanings once again, as follows
if (g->Willness) *c++ ='q’;

if (g->W.hit) *c++ = 'Y";

if (g->W.writing) *c++ = '1/2';

/] ete.

In one *.h file we declare the meaning a word or phrase can have
unsigned illness :1;

unsigned hit : 1;

unsigned writing : 1;

/] ete.

We declare the meaning once again in another *.h file

uchar illness;
uchar hit;
uchar writing;
// ete.

We declare the Part of Speech and the meaning in the

database, as follows

jaundice*N[q]jaundice

hit*e[ifl[hitNhitCcrashLhitFhit

newspaper*N]| ¢ |newspaper

john*N[NHM]john

/letc.
where
N is an abbreviation for Noun
e is an abbreviation for Verb (Present or Past or Participle) or

Noun
In square brackets [|
q is an abbreviation for illness
f is an abbreviation of a concept, comprising a number of

synonyms denoting “hit”

H is an abbreviation for a human being, a person.

Without correct morphological, grammatical, syntactical
and semantical analysis, the software program cannot make
logical inferences, because it will not recognize the gram-
matical, syntactical and semantical role of the words in the
sentence.

The method, upon which the software program makes logi-
cal inferences, is not published. It is a trade secret. We will
describe it briefly below.

And, finally, when we have laid the foundations of our
morphological, syntactical and semantical analysis, we can
start writing our commands, when and what should be done in
order to make logical inferences, in another *.cpp file, as
follows

case 112: // change position of the Noun, preserve the meaning
if (wrd->E.W.name == 1 && wrdm->E.W.name = 1 &&
wrdp->E.W.kill_er==1) {
printf(*\%s\ ”, wrdm->inword);
printf(“was killed »);
printf(“by *);
printf(*\%s\n”, wrd->inword);

}

// where wrd, wrdm, are word positions in the sentence;

// E-W.name, E.-W.kill_er, etc. are semantic codes for concepts.

// the same applies for all codes listed below
if (wrd->E.W.name != 1 && wrdm->E.W.name != 1 &&
wrd->next->E.W.kill_er == 1 && !wrdm->numb) {

printf(*“The »);

printf(*\%s\ ”, wrdm->inword);
printf(“was killed »);

US 8,560,305 B1
5

-continued

printf(“by the);
printf(*\%s\.\n”, wrd->inword);

if (wrd->E.W.name != 1 && wrdm->E.W.name != 1 &&
wrd->next->E.W.seeing == 1 && wrdm->numb) {
printf(*“The »);
printf(*\%s\ ”, wrdm->inword);
printf(“were seen ”);
printf(“by the);
printf(*\%s\.\n”, wrd->inword);

if (wrd->E.W.name != 1 && wrdm->E.W.name != 1 &&
wrd->next->E.W.say == 1 && !wrdm->numb) {
printf(*“The »);
printf(*\%s\ ”, wrdm->inword);
printf(“was accosted ”);
printf(“by the);
printf(*\%s\.\n”, wrd->inword);

if (wrd->E.W.name == 1 && wrdm->E.W.name !=1 &&
twrdm->numb && wrd->next->E.W.attack == 1) {
printf(*“The »);
printf(*\%s\ ”, wrdm->inword);
printf(“was attacked *);
printf(“by *);
printf(*\%s\.\n”, wrd->inword);

¥
if (wrd->E.W.name != 1 && wrd->next->E.W.eat == 1 &&
twrdm->numb &&
(wrdm->E.W.food == 1 || wrdm->E.W.{mit == 1)) {
printf(“The »);
printf(*\%s\ ”, wrdm->inword);
printf(“was eaten ”);
printf(“by the);
printf(*\%s\.\n”, wrd->inword);

// or make a conclusion, below
if (wrdm->E. W.drug == 1 && wrd->E.W.human == 1 && wrd->numb
== 0 && wrdm->E.W.negative != 1 &&
(wrd->next->E.W.take == 1 || wrd->next->E.W.eat == 1 ||
wrd->next->E.W.drink == 1)) {
printf(*'%s\ is ill.\n”, wrd->inword);

if (wrdm->E. W.country == 1 && wrd->E.W.country == 1 &&
(wrd->next->E.W.take == 1 || wrd->next->E.W.attack == 1)) {
printf(*\%s\ is an aggressor.\n”, wrd->inword);

// etc., etc.
i = mpos; continue;
// In an *.h file we describe the word relationships for the above rule as follows:
{“N[VEue]<TA>N”, NULL,112},
// where N, V, T, A, etc., are codes for parts of speech in a defined sequence of words within
// the sentence.
case 113:
if (wrd->E.W.human == 1) {
if (!stricmp(wrdm->inword, “job”) ||
Istricmp(wrdm->inword, “work™)) {
printf(*\%s\ is unemployed.\n”, wrd->inword);
printf(*\%s\ is on the dole.\n”, wrd->inword);

if (!stricmp(wrdm->inword, “parents™)) {
printf(*\%s\ is an orphan.\n”, wrd->inword);

}
i = mpos; continue;
// In an *.h file we describe the word relationships for the above rule as follows:
{“N'hasn’t<T>N”, NULL,113),
{“N'hasn’t"got'<T>N”, NULL,113),
{“N'hasno'N”, NULL,113),
// where N, A, etc. are codes for parts of speech in a defined sequence of words within the
// sentence; hasn’t, has no, etc. are actual words used in this context.
case 123:
if (wrdp->E.W.increase == 1 && !stricmp(wrdm->inword, “in value™)) {
printf(*\%s\ is a good investment.\n”, wrd->inword);

CopySyn();
i = mpos; continue;
// In an *.h file we describe the word relationships for the above rule as follows:
{“[NR]<xY>[EVeu][DAd]”, NULL,123},

US 8,560,305 B1
7

-continued

// where in value is contained in [DAd] as a phrase
case 125: // 2012
if (wrd->E.W.human == 1 && wrdp->E.W.payment == 1 &&
wrdm->E.W.money == 1) {
printf(*\%s\ deals with money.\n”, wrd->inword);

if (wrd->E.W.human == 1 && wrdp->E.W.say == 1 && wrdm->E.W.human
==1 && !wrdm->E.W.nationality) {
printf(*\%s\ and ”, wrd->inword);
printf(*'\%s\ ”, wrdm->inword);
printf(“are interlocutors. \n”);

if (wrd->E.W.human == 1 && wrdp->E.W.gather == 1 &&
wrdm->E.W.human != 1) {
if (wrd->numb == 1) {
printf(*\%s\ ”, wrd->inword);
printf(*have a collection of);
printf(*\%A. \n”, wrdm->inword);

if (wrd->numb !=1) {

printf(*\%s\ ”, wrd->inword);
printf(*has a collection of ”);
printf(*'%s\. \n”, wrdm->inword);

¥
if (wrd->E.W.human == 1 && wrdm->E.W.human == 1 &&
(Istricmp(wrdp->inword, “visit”) |
Istricmp(wrdp->inword, “visited”) || !stricmp(wrdp->inword, “visits”) ||
Istricmp(wrdp->inword, “went to see”) ||
Istricmp(wrdp->inword, “went to see her”) ||
Istricmp(wrdp->inword, “went to see his”) ||
Istricmp(wrdp->inword, “pay a call”) ||
Istricmp(wrdp->inword, “pays a call”) ||
Istricmp(wrdp->inword, “paid a call”) ||
Istricmp(wrdp->inword, “pay a visit”) ||
Istricmp(wrdp->inword, “pays a visit”) ||
Istricmp(wrdp->inword, “paid a visit”))) {
printf(*\%s\ is a guest.\n”, wrd->inword);
printf(*\%s\ is a host.\n”, wrdm->inword);

CopySyn();
i = mpos; continue;
// In an *.h file we describe the word relationships for the above rule as follows:
{“[NR][VEeu]<P>[NAG]”, NULL,125},
// where N, V, T, A, etc.are codes for parts of speech in a defined sequence of words within
// the sentence.
case 126:
if (wrd->E.W.human == 1 && (wrdm->E.W.human == 1 &&
wrdm->E.W.science == 1)) {
printf(*\%s\ is university graduate.\n”, wrd->inword);

if (wrd->E.W.human == 1 && wrd->E.W.fgender == 1 &&
wrdm->E.W.human == 1 && wrdm->E.W.mgender == 1
&& !stricmp(wrdp->inword, “is the wife of)) {
printf(*'%s\ is the husband of ”, wrdm->inword);
printf(*\%s\.\n”, wrd->inword);

if (wrd->E.W.human == 1 && wrd->E.W.mgender == 1 &&
wrdm->E.W.human == 1 && wrdm->E.W.fgender == 1
&& !stricmp(wrdp->inword, “is the husband of”)) {
printf(*\%s\ is the wife of ?, wrdm->inword);
printf(*\%s\.\n”, wrd->inword);

CopySyn();
i = mpos; continue;
// In an *.h file we describe the word relationships for the above rule as follows:
{“[NR]<XTA>[NAG]”, NULL,126 },
// etc., etc.
case 199:
if (wrd->E.W.human == 1 && wrd->E.W.mgender == 1){
if ((wrdm->E.W.human == 1 && wrdm->E.W.fgender == 1) &&
(stricmp(wrdp->inword, “married”) ||
Istricmp(wrdp->inword, “is married to”))){
printf(*\%s\ is the husband of ”, wrd->inword);
printf(*\%s\.\n”, wrdm->inword);
printf(*\%s\ is the wife of ”, wrdm->inword);
printf(*\%s\.\n"”, wrd->inword);

}

if (wrd->E.W.human == 1 && wrdm->E.W.human == 1){

US 8,560,305 B1

9

-continued

10

if ((wrd->E.W.mgender == 1 && wrdm->E.W.mgender == 1) &&
(stricmp(wrdp->inword, “married”) ||
Istricmp(wrdp->inword, “is married to”))){
printf(*\%s\ and ”, wrd->inword);
printf(*\%s\ are homosexuals.\n”, wrdm->inword);

}

if (wrd->E.W.human == 1 && wrdm->E.W.human == 1){
if ((wrd->E.W.fgender == 1 && wrdm->E.W.fgender == 1) &&
(stricmp(wrdp->inword, “married”) ||
Istricmp(wrdp->inword, “is married to”))){
printf(*\%s\ and ”, wrd->inword);
printf(*\%s\ are lesbians.\n”, wrdm->inword);

}

if (wrd->E.W.human == 1 && wrd->E.W.fgender == 1){
if ((wrdm->E.W.human == 1 && wrdm->E.W.mgender == 1) &&
(stricmp(wrdp->inword, “married”) ||
Istricmp(wrdp->inword, “is married to”))){
printf(*\%s\ is the wife of , wrd->inword);
printf(*\%s\.\n”, wrdm->inword);
printf(*\%s\ is the husband of ”, wrdm->inword);
printf(*\%s\.\n"”, wrd->inword);

¥
if (wrd->E.W.human == 1 && wrdm->E.W.human == 1 &&
Istricmp(wrdp->inword, “was married t0”)){
printf(*\%s\ and ”, wrd->inword);
printf(*\%s\ are divorced.\n”, wrdm->inword);

}

i = mpos; continue;

// In an *.h file we describe the word relationships for the above rule as follows:

{*[NR][vzVEh]<DdA>N”, NULL, 199},

// where N, V, T, A, etc.are codes for parts of speech in a defined sequence of words within

// the sentence.
// etc., etc.

As a result of the instructions above and all other instruc-
tions in the program, which we have not listed, such sentences
as
Ann and All married.
will output the logical conclusion
Ann is the wife of Ali.

The sentence

Ann and Susan married.

will output the logical conclusion
Ann and Susan are lesbians.

The sentence

John killed Ann.

will output the logical conclusion
Ann was killed by John.

John is a murder.

Ann is a victim.

Ann is dead.

The sentence

Ali eats a cake.

will output the logical conclusion
The cake was eaten by Ali.

All is hungry.

The sentence

Pretty is a synonym to beautiful.
will output the logical conclusion
Beautiful is a synonym to pretty.
The sentence

London is as big as Paris.

will output the logical conclusions
Paris is as big as London.

Paris and London are the same big.
etc. examples, covering hundreds of syntactic structures and
many millions of simple and compound (complex) sentences.

35

45

50

55

60

65

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates to a Natural Language Text
Processing System able to process, to parse (to analyse)

morphologically the input word entries,

syntactically and grammatically the input phrases and sen-

tences,

semantically, the input words, phrases and sentences.

Logical conclusions cannot be made without accurate pars-
ing of the input sentence or text. The parsing itself is a com-
plex process, involving other interdependent processes, such
as morphological, grammatical, syntactical and semantical
analysis of the sentence or the entire text.

SUMMARY OF THE INVENTION

The subject matter of the invention deals with Automated
Reasoning, namely inductive and deductive artificial reason-
ing, based on Natural Language written sentences. Using
Natural Language Text Processing techniques, the meaning
of a written sentence is understood, paraphrased, if needed,
and the implicit information found in the sentence is dis-
played. This implicit information interprets additionally in
detail and depth the meaning of the original source sentence.

No statistical analysis or concordance based analysis can
detect the additional, implicit information, contained in the
sentence, because this information is not present in the syn-
onyms of the particular word, or part of the concept the word
belongs to. Nevertheless, this implicit information is present
and understood, implicitly, consciously or unconsciously, by
everybody who reads the text. analysing the user’s written

US 8,560,305 B1

11

input, understanding the meaning of the written input, finding
implicit information in the written input and finally, display-
ing the implicit information.

The medium is non-transitory.

The invention claimed is:

1. A computer-implemented method for finding implicit
information in written natural language sentences comprising
the steps of:

(a) a computer processor, linked to user, who types in a
written text, sentence or sentences, with a request this
written text to be analysed, sentence by sentence, in
order to find implicit information in it; and

(b) the computer processor reads the user’s written sen-
tence, understands its meaning by analysing successive
and non-successive words, up to five words in a
sequence, within the sentence or the clause; and

(c) the computer processor finds logically entailed, new,
novel, implicit information, which is not explicitly men-
tioned in the written sentence, neither contained in the
synonyms of its constituent words, nor present in the
concept(s) the words belong to; and

(d) the computer based software application is a computer
software process for analysing the text, sentence after
sentence, and displaying the implicit information in
written form, for each sentence, as a variant of this
sentence.

2. An automated, intelligent, computer system having a

database of coded information, comprising:

(a) a computer processor linked to one or more users;
wherein the computer processor can receive the user’s

written input; and

20

25

30

12

(b) an automated intelligent system which is controlled by
the computer processor,

wherein the automated intelligent system has a machine pro-
gram code,
wherein the machine program code is executable to perform
a reasoning process,
wherein the reasoning process is tied to a database of words
with coded information,
wherein the coded information comprises part-of-speech
information, including morphological, grammatical, syntac-
tical and semantical information,
wherein the reasoning process is tied to a built-in semantic
representation of word meanings and their relationships,
wherein the automated intelligent system analyses user’s
written input,
wherein the automated intelligent system understands the
grammatical and syntactical structure of user’s written input
and its meaning,
wherein the automated intelligent system finds hidden,
implicit, meaning in users’s written input,
wherein the automated intelligent system displays the
implicit meaning,
wherein the displayed implicit meaning can be used further
by other, internal or external machines, for other tasks.

3. A non-transitory, tangible computer-readable medium
on which are stored computer instructions which, when
executed by a computer, cause the computer to perform the
method of claim 1 via the system of claim 2.

#* #* #* #* #*

